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Abstract
Distributed privacy-preserving machine learning (ML) meth-
ods are increasingly becoming the norm for training ML
models on edge devices. In a popular approach known as
Federated learning (FL), service providers leverage end-user
data to trainMLmodels to improve services such as text auto-
completion, virtual keyboards, and item recommendations.
FL is expected to grow in importance with the increasing fo-
cus on privacy and 5G/6G technologies. FL faces major chal-
lenges such as resource and user heterogeneity, communica-
tion overheads, and efficient privacy preservation. In prac-
tice, training global models via FL is very time-consuming
because of the heterogeneity of clients’ computation and
communication speeds. Even worse, clients may not always
be available to participate in training which limits their repre-
sentation in the global model. Empirical analysis shows that
client availability impacts the model quality which motivates
the design of A2FL. A2FL is a client selection method which
mitigates the quality degradation caused by the misrepre-
sentation of the client population. Our results show that,
compared to existing methods, A2FL can enhance clients’
representation and improve the trained model quality.
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1 Introduction
Recent interest in Edge AI (i.e., pushing intelligence towards
the edge) is mainly driven by the need to push computa-
tion toward data sources in an effort to enhance privacy and
security [12, 30]. These efforts led to the formation of the Fed-
erated Learning (FL) paradigmwhich transformed traditional
distributed machine learning (ML) training methods. Many
service providers such as Google, Facebook, and Apple use FL
to train global models for natural language processing (NLP)
and computer vision (CV) tasks to server applications such
as virtual keyboards, object detection, image classification,
and recommendation systems [20, 21, 24, 26, 53, 54, 64]. FL is
commonly used with distributed medical imaging data [37];
smart camera images [29], and live network traffic data [61].
In FL, the central server managing the models ships them
to the end-device learners who are responsible for perform-
ing the training locally to preserve the privacy and security
of user data. Due to the lack of control over client devices,
FL environments are highly heterogeneous which presents

a variety of challenges. In FL, the process is participatory
and relies on the availability of the learners and their data.
These learners produce and store the application data used
to locally train the central ML model and contribute their
model updates to the central server for incorporation into
the global model.
Time-to-accuracy is a vital performance measure for training
quality and is the focus of much work in this area [30, 32,
35, 58, 62]Generally, the objective is to reduce the time-to-
accuracy by either improving the statistical efficiency and/or
reducing the training time. Statistical efficiency depends on
the number of participating learners and their data as well as
learning-specific hyper-parameters such as minibatch size,
learning rate, and the number of local training epochs. The
hyper-parameters are factors that require gradual tuning for
different FL jobs. Additionally, handling heterogeneous train-
ing data is generally more challenging and therefore many
efforts are dedicated to addressing the data heterogeneity
problem [16, 23, 34, 43, 50, 56, 63].
Another factor that can contribute to low training quality is
the selection method used to pick a subset of learners from a
large population of learners affecting the data sample distri-
bution. During the selection stage, the server samples from
the available learners to participate in training the global
model on their local datasets in this round. In heterogeneous
environments, clients tend to be battery-powered mobile
devices (e.g., smartphones, smart wear, or IoT devices) and
so the availability for participation is typically dependent on
one or more factors such as the charging state of the device,
whether the device is connected to power, WIFI, and/or idle.
Client selection has a predominant role in affecting the
quality of the trained model [10, 32, 38]. Most methods fo-
cused on the heterogeneity of client devices and data. For
instance, FedCS [45] favours fast clients over slow ones;
InclusiveFL [38] ships models of different sizes to accommo-
date various clients’ computational capabilities; DivFL [10]
tries to mitigate the data heterogeneity by selecting a sam-
ple of clients that potentially approximates the majority of
data distributions. These solutions do not take into account
the dynamics of clients’ availability who possess the data
samples. Therefore, the term behavioural heterogeneity has
been coined to represent the availability dynamics of the
learners [6, 30, 62]. Specifically, learners exhibit variable
availability patterns at different times during the training

1



Conference’17, July 2017, Washington, DC, USA Ahmed M. Abdelmoniem

rounds which makes learning tasks more challenging on het-
erogeneous (or non-IID) data distributions [6, 12, 30, 33, 62].
Therefore, any practical FL framework should take into ac-
count the behavioural heterogeneity of the learners to boost
the quality of the trained model.
In this work, we aim to focus on addressing the impact of
behavioural heterogeneity in FL training. We focus on dis-
secting the impact on time-to-accuracy caused by training
models on non-diverse sets of data samples due to some learn-
ers (with unique data samples) being unavailable for partici-
pation during the selection stage. We address behavioural
heterogeneity to improve the system’s robustness to realistic
(or dynamic) data distributions among learners. To this end,
we introduce A2FL, a practical participant selection method
which accounts for clients’ availability andmaximizes clients’
representation during FL training. A2FL intelligently selects
the least available participants in the future with higher pri-
ority ensuring their data distributions are seen by the trained
model. A2FL is compatible with and is a plug-in component
for existing practical FL systems [12–14].
Our contributions are as follows:
1. We demonstrate that learners’ limited availability in FL

can significantly affect the trained model quality and
time-to-accuracy.

2. We propose A2FL to maximize the majority of learners’
representation in the training process.

3. We evaluate A2FL using a common FL benchmark and
show its benefits.

2 Related Work
Federated Learning (FL): is a new distributed machine
learningmethod that is becoming increasingly popular for its
privacy-preserving and low-communication features. This
motivated the growing adoption of FL to improve the end-
user experience (e.g., the search suggestion quality of virtual
keyboards [64]). In FL, training a global model is assigned to
a sub-population of decentralized devices such as mobile or
IoT devices. These devices possess private data and engage
in training the model on their data [12, 41].
Participant Selection Strategies: In each round, the server
selects among a subset of the available learners to train the
global model. Several works designed better selection strate-
gies other than Random selection. For instance, [45] select
learners with fast hardware and network speed. [17, 19, 48]
select learners whose updates result in higher loss values
(i.e., statistical gain). Oort [32] combines both goals (i.e., sys-
tem and statistical efficiency). These approaches result in
models trained on a limited subset of the large population
compromising on an inclusive representation of the clients.
System heterogeneity: One of the major contributors to
system performance unpredictability is the heterogeneity
inherent in many distributed systems. Mainly, in the FL con-
text, the heterogeneity of devices’ system configurations (e.g.,

computation, communication, battery, etc) results in unpre-
dictable performance. For instance, the stragglers (i.e., slow
workers) can halt the training process for a prolonged dura-
tion [2, 8]. Several solutions exist that address this problem
through system and algorithmic solutions [2, 8, 32, 35]. More-
over, in FL, the heterogeneity is also a byproduct of other
artifacts other than the devices. For example, the learner
data distributions, the participants’ selection method, and
the behaviour of the device’s owner are common sources of
heterogeneity in FL setting [6, 7, 12].
Energy-conservation: Considering the uncertainties in the
mobile environment, recently energy-aware federated learn-
ing techniques have been proposed [9, 30]. These works aim
for energy conservation to mitigate client dropouts which is
the major contributor to the degraded FL model qualities [9].
Improvements in FL: In FL, several works aim to improve
the time-to-accuracy of training by leveraging techniques
such as periodic updates, adaptive compression, and asyn-
chronous updates [2, 8, 9, 12].Several methods that have
been shown to achieve good performance in distributed ML
settings could be applied to the FL settings such as [1, 3, 4,
22, 49, 60] Other work studied the privacy guarantees of FL
settings [42, 44]. Moreover, the bias in FL is studied to ensure
fair participation in the training process [5, 8].
In this work, we address a unique problem impacting the
quality of the FL-trained models due to the non-inclusive
selectionmechanisms. To address this, therewe treat learners
as a diverse set of data sources and leverage their availability
for improved diversity.

3 Background
We first introduce the FL training procedure while focusing
on system design aspects. Then, we highlight the major chal-
lenges in existing FL systems based on empirical evidence
from real FL benchmarks. Then, we motivate our work by
highlighting the main drawbacks of existing solutions.

3.1 Federated Learning
In this work, we build upon the common FedAvg aggrega-
tion method [12, 41] where the training process requires a
(logically) centralized FL server and a large set of decentral-
ized devices, (e.g., sensors, smartphones, and/or IoT devices).
These devices possess private training data in their local stor-
age and are called learners. For privacy and security reasons,
data are not shared with the FL server or other learners. The
FL server manages the training process and invokes learners
to start a collaborative task of training a joint global model
on their distributed datasets.
We show the FL stages for training a common model in Fig. 1.
At the start of each round, the FL server initiates the selection
phase and waits for a sufficient number of learners to become
available for training.1 The server chooses a sample from

1A learner is available if it is: charged, idle, and/or on WIFI [12].
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Figure 1. A FL training round. Clients are sampled to run an
FL training task and submit their updates in a given round.

a large number of online learners – called participants –
to participate in updating the global model in the current
round. It sends each participant the task which consists of
the current version of the global model and any task-specific
settings (e.g., hyper-parameters).
After receiving the task, each participant runs a local opti-
mization process to optimize the model over local data for
several epochs. The updated model is sent to the aggrega-
tion server during the reporting stage. The FL server either
waits until a deadline expires or when the target number of
updates is received. The server then aggregates the updates
and checkpoints a new version of the model. This completes
the round and several rounds are repeated until the training
objective is fulfilled (e.g., the target accuracy is achieved or
the training cost exceeds a threshold).
The main distinction between conventional distributed data-
parallel training and federated learning is that the learners
are independent and not under a single entity’s manage-
ment. Therefore the following types of heterogeneity are
common in FL: 1) data heterogeneity: the participants may
have varying data samples that are different in size, number
of classes, and/or distribution; 2) device heterogeneity: the
participants may use devices of different computational and
communication capabilities owing to variable hardware and
network settings; 3) behavioural heterogeneity: the partic-
ipants’ availability for training changes over training rounds
which is mainly driven by users’ device usage patterns.
Several works have tried to address the challenges posed
by different types of heterogeneity in FL settings. Though,
most of these works focus on tackling data or device het-
erogeneity [18, 32, 35, 36, 58]. Their main objective is to
improve model quality and/or training speed to boost time-
to-accuracy. In this work, we focus on behavioural hetero-
geneity which creates unique challenges for FL systems. This
is because this type of heterogeneity is harder to control and
can have a large influence on the trained model quality.
To show the impact of behavioural heterogeneity, we experi-
ment with two cases: i) A uniform case (U): where devices
have homogeneous device configurations (i.e., all learners
can submit updates in time) and learners remain available
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Figure 2. Influence of availability dynamics on test accuracy.

throughout training (i.e., random sampling results in fair se-
lection). ii) A behaviourally heterogeneous case (BH): where
learners have heterogeneous availability patterns with the
hardware and network profiles of learners remaining uni-
form. Using various CNN and RNN benchmarks on five com-
mon FL datasets, we perform experiments across a range of
FL settings (i.e., by the varying systems and learning hyper-
parameters that influence model quality).Figure 2 shows box
plots of the average test accuracy (normalized by the de-
fault U case) measured for a large number of experiments
of different settings in both the U and BH cases. The results
demonstrate that behavioural heterogeneity has a signifi-
cant impact on model quality. The normalized average test
accuracy of BH compared to U is 0.93× and 0.78× for the
median (shown as a green line) and average, respectively.
Moreover, the variations in final accuracy across BH case are
significantly high and can result in training divergence. Next,
we review existing systems and motivate our approach.

4 Motivation
We note that many existing efforts attempt to address data
heterogeneity [35, 55] and/or device heterogeneity [40, 41].
Unfortunately, existing system designs do not take into ac-
count behavioural heterogeneity which may limit the inclu-
sion of the larger population of the data sources (i.e., some
learners may never get selected due to their unavailability).
This becomes especially important when data are non-IID
which is the typical setting in FL environments where each
learner has a unique data distribution [16, 33, 43]. Among
recent designs, Oort is a state-of-the-art (SOTA) FL selec-
tion method that favours learners with high statistical and
system utility [32]. Oort proposes a participant selection
algorithm that favours higher utility learners to improve
time-to-accuracy. The utility is composed of a statistical term
which relates to the convergence speed and a system term
which relates to the training time. Systematically, Oort’s se-
lection method prefers fast learners to reduce round time
and can sometimes trade-off training time to include slow
learners whenever statistical efficiency is not improving.
We highlight the trade-offs between two objectives system
efficiency as targeted by Oort and clients’ representation
as targeted by A2FL. These are conflicting optimization goals
in FL. Exploring the extremes of these two objectives, we
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Figure 3. Influence of data heterogeneous setting.

show empirically how the existing SOTA systems such as
Oort fail to perform as designed on common FL benchmarks.

4.1 Training Speed vs. Client Representation
Many FL systems aim to decrease the time taken to reach a
target accuracy by prioritizing the selection of fast learners
(i.e., system efficiency) [32] or increasing convergence speed
by preferring learners with higher data quality (i.e., statis-
tical efficiency) [31, 35, 36, 43]. This results in models that
are biased towards learners which, due to external factors,
possess faster devices and/or produce data more frequently.
Though these approaches improve time-to-accuracy, they do
not provide good coverage of the large pool of learners’ data
and fail to have good client representation. This can be ad-
dressed with a selection strategy that is more inclusive over
the large population though inevitably results in increased
training time due to the potential inclusion of stragglers [58].
It is evident that the two goals present two extremes of the
design space which FL designers need to explore and balance
against each other. One of the extremes is represented by
Oort which aggressively reduces training time by exploit-
ing fast learners while ignoring the diverse set of learners’
data distributions. As a result, the trained models are less
robust to variations in data distributions when deployed in
practice, where non-IID data is the norm rather than the
exception. It is intuitive to expect unfair selection to produce
a global model that does not cover the majority of learners’
data [27, 36]. At the other extreme, the designer could skip
the selection phase and invoke all available learners for train-
ing to maximize client representation but this also comes at
the expense of increased resource wastage [58, 59].
To balance the two goals, an FL system can perform client
selection in a manner that ensures high levels of clients rep-
resentation. This would result in some reduction in time
to accuracy. In this work, we aim to leverage this concept
and address this gap in existing system designs with a novel
approach that places clients’ representation at the forefront
of FL system design. In the following, we empirically demon-
strate that SOTA systems fail to produce satisfactory models
for realistic FL scenarios and present our design of A2FL
which aims to enhance model quality and fairness through
maximizing clients’ representation in FL training.
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Figure 4. Influence of dynamic clients’ availability.

4.2 Selection Phase and Client Representation
Commonly uniform random sampling is used by existing FL
systems to sample learners during the selection phase [12, 15,
64]. The authors in [32] highlight that this naive method can
lead to selecting learners with random computation and com-
munication configurations which results in a large variation
in completion time. Consequently, this increases the training
time as the server must wait for stragglers to submit their
updates. On the contrary, Oort advocates biasing selection
towards learners with fast devices to decrease the training
time in each round. This is undesirable because the trained
model may be biased towards a specific group of learners
because the model is trained mainly on this group’s data.
To empirically study the impact of the selection algorithm
on the final accuracy vs time-to-accuracy, we conduct ex-
periments using Google Speech dataset and train a speech
recognition model (i.e., ResNet32) in FL setting for 1,000
rounds. We use two partitions of the data: (1) distributed
uniformly the samples among clients from all labels in the
dataset (i.e., IID setting); (2) each learner is constrained only
to a random ≈10% of the labels but data points for these
labels are sampled uniformly (non-IID setting). We compare
Oort and Random selection algorithms.
Selection Method Does Matter: To analyze the role of
the selection strategy, learners are set to be always available.
Fig. 3 shows the average test loss (i.e., averaged over test
clients) vs the training wall-clock time. Fig. 3a) shows the
IID case where both Oort and Random achieve close to the
same final accuracy but Oort outperforms Random in terms
of training time by 12 hours. This is because when data is
IID, the selection of the learner does not impact the quality
of the model and therefore Oort’s aggressive approach of
minimizing the completion time can help achieve shorter
time-to-accuracy. Conversely, Fig. 3b) shows the non-IID
case where random selection achieves comparable accuracy
to the IID case and outperforms Oort in terms of final model
accuracy though still at the expense of higher completion
time. Hence, the selectionmethodmatters when dealing with
non-IID cases and Random selection (if availability is ruled
out) leads to higher quality due to its higher chances for a
diverse user selection.
Learners’ Availability Does Matter: We next examine
the role of learners’ availability on the performance of se-
lection methods. Hence we set learners’ availability based
on profiles from a real-world trace of mobile users. To this
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end, we analyze and extract profiles from a large-scale user
behaviour trace [62] involving more than 136K users of an
FL application over a week. Availability is set based on de-
vices being connected to a charger, resulting in availability
duration with a long-tail distribution, and the majority (70%)
of clients are available for less than 10 minutes. Hence, the
availability may have a significant impact on the data dis-
tributions the model is trained on which varies per round
depending on the current online learners [27, 62].
In the following, we extend our analysis to observe how
the variations in availability may impact the performance
of selection methods and hence the model quality. To this
end, we repeat the previous experiments using the Google
Speech benchmark and IID and non-IID data distributions.
We compare the execution of the selection algorithm in
two different conditions: i) all learners are always available
(AlwaysAvail); ii) the availability of the learners varies over
time depending on the dynamics of users’ availability pro-
file (VarAvail). Fig. 4 shows the results for the average test
loss (i.e., averaged over the test clients) vs the training wall-
clock time. We observe that in the IID case, the availability
of the learners has almost no impact on the average test loss
obtained in the two different approaches. This is because
learners with IID datasets possess data samples with similar
distributions. On the other hand, in the non-IID case, we
observe that the variable availability of the learners has a
detrimental impact on the achieved final test loss and hence
the quality of the obtained global model.

5 Availability-Aware Federated Learning
From the previous analysis, we observe that in federated
learning settings learners’ data distributions play a critical
role in the quality of the trained model. Therefore, especially
in realistic non-IID cases, the model must be exposed to
the majority of the learners’ data samples (or distributions)
to increase its generalization abilities. The state-of-the-art
selection method (Oort) has a principled selection method,
however, by biasing it towards a certain group of learners
(e.g., faster ones) it does not fully address the selection prob-
lem. We propose that the selection method should maximize
exposure of the model to learners’ data while not sacrificing
the system efficiency of the training (i.e., time-to-accuracy).
This can be achieved by prioritizing clients whose availabil-
ity for training in the system is limited while they possess
valuable data. In essence, this takes into account the vari-
able availability of learners as a key factor which perturbs
the global data distribution over time. In the following, we
present A2FL, an inclusive selection method for federated
learning which gives selection priority to the learners with
limited availability than the ones that can complete the train-
ing faster (i.e., faster computation and/or network).
A2FL aims to mitigate the under-representation of various
learners’ data distributions during the FL training process

Algorithm 1:Mixed Selection Algorithm
Input :𝑁𝑡 -Target Number of learners
Input :𝐿𝑎𝑠 -Learners selected by alternative method
Output :𝐿𝑠 -Selected learners
Initialize 𝐿𝑠 = Φ, 𝑃𝑡 = Φ

Let S: the server and l: a learner
𝑂𝑛_𝐸𝑣𝑒𝑛𝑡 Learner_Join_Task

S: send estimation of the period for the next round;
l: use FAP and send availability probability 𝑝𝑙
S: append 𝑝𝑙 to the probability list 𝑃𝑡 = 𝑃𝑡 ∪ 𝑝𝑙 ;

𝑂𝑛_𝐸𝑣𝑒𝑛𝑡 End_Selection_Timer
S: add 𝑙 in 𝐿𝑠 all unavailable learners 𝑃𝑙 < 0.5 ;
if len(𝐿𝑠 ) < 𝑁𝑡 then

S: select a random 𝑙𝑎 from 𝐿𝑎𝑠

S: add 𝑙𝑎 to 𝐿𝑠 if 𝑙 ∉ 𝐿𝑠

end

without adversely increasing training time. A2FL is a novel
selection method which prioritizes the least available learn-
ers in the future. The goal is to train the model on a larger
base of data samples covering the diverse set of data distri-
butions represented by each unique learner.

5.1 High-Level Design of A2FL
We present the design of A2FL by contrasting it with that of
Oort. At the high level, from a design perspective, both selec-
tion methods introduce a learner selection plug-in module
which is responsible for the decision logic on which learners
participate in the training rounds. However, A2FL consists
of two main parts:
1. the Future Availability Prediction (FAP) model which

produces the probability of learner’s availability;
2. the Availability-based Prioritization (AP) module which

selects the learners based on learners’ availability.
In principle, Oort avoids the selection of slow learners leav-
ing them under-represented. On the other hand, A2FL im-
proves the representation of the full client population by
taking into account the learners’ availability in the future
regardless of their computational and/or communication ca-
pabilities. A2FL selects ones that are highly unlikely to be
present in future rounds and then fills the remaining slots
randomly with clients selected by another method (e.g., Ran-
dom or Oort). We next describe the FAP module which uses
a time-series model to produce availability probability for
each learner and then communicate the probability to the
AP module. Then, the AP module which is responsible for
prioritizing participants with low availability.

5.2 Future Availability Prediction (FAP)
The FAP model needs to be of low computational overhead
on learner devices. Therefore, a linear forecasting model is
used [28]. The model is trained locally on devices’ changes in
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status (e.g., charging). To evaluate such a model, we use Face-
book’s Prophet tool [52] which trains a time-series forecast-
ing model using linear regression. We leverage the Stunner
dataset [51], which contains event traces collected world-
wide from a large-scale number of mobile devices. We use
a total of 135 devices after processing a total of one million
trace events in May 2018 by filtering out any device with less
than 1000 trace samples. For predicting availability, we use
the plugged and charging state to train a forecasting model
for each device. We use the first half of the devices’ samples
for training and the second half for testing. The results show
that the models predict future states with high accuracy with
the values of the mean absolute error (MAE), mean square
error (MSE), and coefficient of determination (R2Score) av-
eraged across devices, which are 0.027848, 0.011563, and
0.928258, respectively. Notably, A2FL does not compromise
users’ privacy and integrates with the existing techniques
for secure aggregation or differential privacy.

5.3 Availability-based Prioritization (AP) module
The main objective of A2FL is to improve all clients’ repre-
sentation in the training process by exposing the model to
the wide-spectrum distribution(s) of learners’ Non-IID data.
Algorithm 1 describes how the AP module selects learners in
each training round. Each learner maintains and trains the
FAP model periodically on their local device state. For each
learner 𝑙 that joins the FL training task, the AP module sends
the learner a future round time slot which can be estimated
from the historical round duration. Each learner uses its FAP
model to infer its availability probability in the queried time
slot. When the selection phase comes to end, the AP module
sorts the learners based on their availability probabilities 𝑃
(breaking ties with a random shuffle) and selects the least
available learners to start the round. Selected participants
hold off participating for a few rounds (e.g., 5 rounds) if they
successfully submit their updates, similar to [12].

6 Evaluation
In this section, we evaluate A2FL against the state-of-the-art
methods and show its benefits in heterogeneous settings.
Experimental Setting: We run a common speech recogni-
tion FL benchmark using Google Speech dataset [57] to be
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Figure 6. Percentage of unique learners and number of ag-
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trained on ResNet model [25]. The clients are assigned real-
istic device and network profiles collected from AI Bench-
mark [11] and MobiPerf Trace [39], respectively. The ex-
periments are event-driven in which the time is advanced
based on the computational and communication profiles
of the devices. That is the completion of training and up-
load/download of the model are based on devices’ computa-
tion and networks speeds, respectively. To obtain the quality
metrics of training the model, we use a cluster of 4 GPU
servers and run the clients on them in batches of 4 clients in
parallel. We use PyTorch v1.8.0 as the training backend [46].
Similar to Oort, YoGi [47] is used for aggregation. The num-
ber of epochs, batch size, and learning rate hyper-parameters
are set to 1, 20, 0.005, respectively. The per-round target num-
ber of clients is 10. For more details, refer to [32].
Data Partitioning: We use the default data mappings in
Oort [32]. And, we use more realistic Non-IID partition in
which clients can have only a random 10% of the labels (i.e.,
4 out of 35). Then, clients are assigned data samples from
each client’s pre-chosen labels uniformly at random.
Devices and Availability: learners’ devices are assigned
a random profile for inference2 and network latency from
AI [11] and MobiPerf [39] benchmarks, respectively. For
profiling availability, we use a mobile users trace of events
collected, over a period of one week, from over 136k devices
from various countries [62].
Experimental Results: Weuse the same setup as inOort [32]
and enable the real-world behavioural trace (i.e., VarAvail).
We compare A2FL, Random, and Oort selection in terms of
the average test loss versus the training time. Fig. 5a and
Fig. 5b show that, whether using Oort’s data or non-IID data
mapping, A2FL achieves noticeable lower test loss compared
to the other methods. A2FL has slightly higher time com-
pared to Oort which biases the selection to lower round time
impacting the quality negatively esp. in the non-IID case.
Fig. 6a shows that both A2FL and Random have a high rate
of unique learners contributing to model training compared
to Oort. A2FL selects the least available participants first
which results in a higher total unique number of learners
which explains the better model over other methods. By
selecting, the least available learners first, A2FL is able to
harness their data early in the training to boost the clients’
representation in the model especially when data is non-IID.

2It is assumed that the training cost is 3× of the inference [32].
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Fig. 6b shows that the total aggregated updates are lower for
A2FL, yet it achieves the best model quality. This shows that
having more aggregated updates is not the only factor that
contributes to the model convergence, rather the uniqueness
of the data points on themodel is trained. Note that, the lower
number of updates forA2FL is because some learners become
unavailable after selection during the training. We think
the model quality can be improved if these updates were
incorporated. This improvement in reducing the number of
failed updates is left for future exploration.

7 Conclusion
We focus our study on the impact of behavioural heterogene-
ity on federated learning. We dissected the main cause for
the low-quality models trained by state-of-the-art selection
methods in realistic non-IID scenarios. Hence, we revisited
the selection strategy which plays a key role in model quality.
To this end, we propose inclusive federated learning (A2FL)
to maximize the diversity of the learners’ pool on which
the model is trained. Experiments with a real FL benchmark
show A2FL improves model quality with minimal training
cost compared to existing methods. As part of future work,
we aim to study the interplay of various selection methods
and explore adaptive selection schemes.
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