
A2FL: Availability-Aware Selection for Machine
Learning on Clients with Federated Big Data

Ahmed M. Abdelmoniem1,2,∗ and Yomna M. Abdelmoniem2,#, and Ahmed Elzanaty3
1School of EECS, Queen Mary University of London, UK

2Faculty of Computers and Information, Assiut University, Egypt
3Institute of Communication Systems, 5G & 6G Innovation Centre, University of Surrey, UK

ahmed.sayed@qmul.ac.uk, yomna.m.a.sayed@gmail.com, a.elzanaty@surrey.ac.uk

Abstract—Recent advances in Big Data Analytics are primarily
driven by innovations in Artificial Intelligence and Machine
Learning Methods. Due to the richness of data sources at the edge
and with the increasing privacy concerns, Distributed privacy-
preserving machine learning (ML) methods are increasingly
becoming the norm for training ML models on federated big data.
In a popular approach known as Federated learning (FL), service
providers leverage end-user data to train ML models to improve
services such as text auto-completion, virtual keyboards, and item
recommendations. FL is expected to grow in importance with the
increasing focus on big data, privacy and 5G/6G technologies.
However, FL faces significant challenges such as heterogeneity,
communication overheads, and privacy preservation. In practice,
training models via FL is time-intensive and worse its dependent
on client participation who may not always be available to join
the training. Our empirical analysis shows that client availability
can significantly impact the model quality which motivates the
design of an availability-aware selection scheme. We propose
A2FL to mitigate the quality degradation caused by the under-
representation of the global client population by prioritizing the
least available clients. Our results show that, compared to state-
of-the-art methods, A2FL can improve the client diversity during
the training and hence boost the trained model quality.
Index Terms—Federated Learning, Heterogeneity, Selection

I. INTRODUCTION

Recently, Big Data analytic has seen a paradigm shift towards
Edge AI (i.e., pushing intelligence towards the edge). This is
mainly driven by the need to move computation toward data
sources in an effort to reduce communication needs as well
as enhance privacy and security [1], [2]. These efforts led to
the formation of the Federated Learning (FL) paradigm which
transformed traditional distributed machine learning (ML)
training methods. Many service providers such as Google,
Facebook, and Apple use FL to train global models for natural
language processing (NLP) and computer vision (CV) tasks to
server applications such as virtual keyboards, object detection,
image classification, and recommendation systems [3]–[7]. FL
is commonly used with distributed medical imaging data [8];
smart camera images [9]. In FL, the central server managing
the models ships them to the clients’ end-device on which the
training is performed locally to preserve the privacy and secu-
rity of user data. Due to the lack of control over client devices,
FL environments are highly heterogeneous which presents a

∗Corresponding author. #Contributed during an internship at QMUL, UK

variety of challenges. In FL, the process is participatory and
relies on the availability of the clients and their data. These
clients produce and store the application data used to locally
train the central ML model and contribute their model updates
to the central server for incorporation into the global model.
Time-to-accuracy is a vital performance measure for training
quality and is the focus of much work in this area [2], [10]–
[13]. Generally, the objective is to reduce the time-to-accuracy
by reducing the training time and improving the statistical
efficiency. Reducing training time requires hardware accel-
eration, and time-efficient training algorithms, and reducing
the training time requires time-efficient training algorithms,
hardware acceleration, and bandwidth-efficient communication
methods on the devices [2], [13], [14].
On the other hand, enhancing statistical efficiency depends
on the number of participating clients and their data as well
as learning-specific hyper-parameters such as minibatch size,
learning rate, and the number of local training epochs.1.
Improving statistical efficiency is challenging, especially for
heterogeneous big datasets. Therefore, many efforts are dedi-
cated to addressing the data heterogeneity problem [15]–[18].
Another factor that can impact the training quality is the
selection method used to pick a subset of clients from a
large population of clients affecting the data sample distri-
bution [13], [19], [20]. During the selection stage, the server
samples from the available clients to participate in training the
global model on their local datasets in this round.Most meth-
ods focused on the heterogeneity of client devices and data.
For instance, FedCS [21] favours fast clients over slow ones;
InclusiveFL [19] ships models of different sizes to accommo-
date various clients’ computational capabilities; DivFL [20]
mitigates the data heterogeneity by selecting a sample of
clients to approximate the majority of data distributions.
In heterogeneous environments, clients tend to be battery-
powered mobile devices (e.g., smartphones, smart wear, or IoT
devices) and so the availability for participation is typically
dependent on one or more factors such as the charging state of
the device, whether the device is connected to power, WIFI,
and/or idle. Existing solutions do not take into account the
dynamics of clients’ availability who possess the data samples.

1Hyper-parameters require gradual tuning for different FL jobs and settings



Therefore, the term behavioural heterogeneity has been coined
to represent the availability dynamics of the clients [2], [11],
[22]. Specifically, clients exhibit variable availability patterns
at different times during the training rounds which makes
learning tasks more challenging on heterogeneous (or non-IID)
data distributions [1], [2], [11], [22]. Although the previous
works tried to analyze behavioural heterogeneity and its huge
impact on training performance, they did not provide a solution
to the problem. Therefore, any practical FL framework should
take into account the behavioural heterogeneity of the clients
to boost the trained model quality.
In this work, we aim to focus on mitigating the impact of
behavioural heterogeneity in FL training. We first dissect the
impact on time-to-accuracy caused by training models on non-
diverse sets of big data samples. This phenomenon arises as
some clients (with unique data samples) are unavailable for
participation during the selection stage. Note that the server
determines the availability criteria for the devices, e.g., power,
network, and idle status. Then, we propose a behavioural
heterogeneity-aware selection method to improve the system’s
robustness to the dynamic and variable data distributions of
the clients that usually occur in practice. To this end, we
introduce A2FL, a participant selection method which accounts
for clients’ availability and maximizes clients’ diversity during
FL training. A2FL intelligently selects the available clients
that have lower availability probability in the future, ensuring
their data distributions are accounted for in the trained model.
A2FL is compatible with and is a plug-in component for
existing practical FL systems [1], [23]. Our contributions can
be summarized as follows:

1) We conduct an extensive empirical study which demon-
strates that the limited availability of participants in FL
can significantly impact both the quality and time.

2) Motivated by the lack of schemes with availability con-
sideration, we propose A2FL to maximize the diversity
of the clients throughout the training process.

3) We conduct experiments using a common FL benchmark
to evaluate A2FL and show its benefits in enhancing the
model quality with data distributions.

II. RELATED WORK

Federated Learning (FL): is an ML paradigm where a server
distributes the training task on a sampled set of decentralized
clients. The clients train a global model on their local and
private data without sharing it [24]. FL is used to improve the
quality of many user-facing applications (e.g., virtual keyboard
applications [1], [3]). FL frameworks enable researchers to
conduct experiments with new designs [11], [25], [26]. As
an example, the Leaf framework [25] was used to study
heterogeneity [11] and the FedScale framework [26] covers
a diverse set of real benchmark datasets.
Participant Selection Strategies: In each round, the server
selects among a subset of the available clients to train
the global model. Several works designed better selection
strategies other than Random selection. For instance, [21]
select clients with fast hardware and network speed. Other

C
lie

nt
s

Round k

Selection

lo
g-

in

Up
da

te
sTask

Training

Aggregation

Round deadline

Not chosen 
Training

Se
rv

er

Available Not Available

Task

Not Available – No login

Selection

Fig. 1: A FL training round. Clients are sampled to run an FL
training task and submit their updates in a given round.

works [27], [28] select clients whose updates result in higher
loss values (i.e., statistical gain). Oort [13] combines both
goals (i.e., system and statistical efficiency). These approaches
result in models trained on a limited subset of the large
population compromising on an inclusive client representation.
Heterogeneity in FL: Wide dynamics in system behaviour
due to client, system, and data heterogeneity is a great chal-
lenge for FL systems. clients’ compute speed can introduce
stragglers and increase round duration [16]. Architectural and
algorithmic solutions have been proposed [10], [13], [16].
FL Heterogeneity is quite challenging because clients have
variable data, device capabilities, and availability which are
hard to tune [1]–[3].
FL proposals: FL systems have improved over time. Some
proposals reduce communication time [1], [14], improve sys-
tem privacy techniques [1], [29], handle stragglers [10], [16],
[30], [31], minimize power usage [32], [33], and produce
personal models from global models [34]. Many works have
addressed data [15] and device [12], [13], [21], [30], [31]
heterogeneity.
In this work, we address a unique problem impacting the
quality of models arising from the non-inclusive selection. To
address this, we treat clients as a diverse set of data sources
and leverage their availability for improved diversity.

III. BACKGROUND

We first introduce the FL training procedure while focusing
on system design aspects. Then, we highlight the major
challenges in existing FL systems based on empirical evidence
from real FL benchmarks. Then, we motivate our work by
highlighting the main drawbacks of existing solutions.

A. Federated Learning

In this work, we build upon the common FedAvg aggregation
method [1], [24] where the training requires a (logically)
centralized server and a large set of decentralized devices (e.g.,
sensors, smartphones, and/or IoT devices). These devices pos-
sess private training data in their local storage and are called
clients. For privacy and security reasons, data are not shared
with the FL server or other clients. The FL server manages
the training process and invokes clients to start a collaborative
task of training a global model on their distributed data.
We show the FL stages for training a common model in
Fig. 1. At the start of each round, the FL server initiates the



selection phase and waits for a sufficient number of clients to
become available for training where a client is available if it
is: charged, idle, and/or on WIFI [1]. The server chooses a
sample from a large number of online clients to participate in
updating the global model in the current round. It sends each
participant the task which consists of the current version of
the global model and any task-specific settings.
After receiving the task, each participant runs a local opti-
mization process to optimize the model over local data for
several epochs. The updated model is sent to the aggregation
server during the reporting stage. The FL server either waits
until a deadline expires or when the target number of updates
is received. The server then aggregates the updates and check-
points a new version of the model. This completes the round
and several rounds are repeated until the training objective is
fulfilled (e.g., the target accuracy is achieved or the training
cost exceeds a threshold).
The main distinction between conventional distributed data-
parallel training and federated learning is that the clients are in-
dependent and not under a single entity’s management. There-
fore the following types of heterogeneity are common in FL:
1) data heterogeneity: the participants may have varying data
samples that are different in size, number of classes, and/or
distribution; 2) device heterogeneity: the participants may
use devices of different computational and communication
capabilities owing to variable hardware and network settings;
3) behavioural heterogeneity: the participants’ availability for
training changes over training rounds which is mainly driven
by users’ device usage patterns.
Several works have tried to address the challenges posed by
different types of heterogeneity in FL settings. Though, most
of these works focus on tackling data or device heterogene-
ity [10], [12]–[14]. Their main objective is to improve model
quality and/or training speed to boost time-to-accuracy. In this
work, we focus on behavioural heterogeneity which creates
unique challenges for FL systems. This is because this type
of heterogeneity is harder to control and can have a large
influence on the trained model quality.

IV. MOTIVATION

We note that many existing efforts attempt to address data
heterogeneity [10] and/or device heterogeneity [24], [29].
Unfortunately, existing system designs do not take into account
behavioural heterogeneity which may limit the inclusion of the
larger population of the data sources (i.e., some clients may
never get selected due to their unavailability). This becomes
especially important when data are non-IID which is the
typical setting in FL environments where each client has a
unique data distribution [15], [35]. Among recent designs,
Oort is a state-of-the-art (SOTA) FL selection method that
favours clients with high statistical and system utility [13].
Oort proposes a participant selection algorithm that favours
higher utility clients to improve time-to-accuracy. The utility is
composed of a statistical term which relates to the convergence
speed and a system term which relates to the training time.
Systematically, Oort’s selection method prefers fast clients to

reduce round time and can trade-off training time to include
slow clients whenever statistical efficiency is not improving.
We highlight the trade-offs between two objectives system
efficiency as targeted by Oort and clients’ representation as
targeted by A2FL. These are conflicting optimization goals in
FL. Exploring the extremes of these two objectives, we show
empirically how the existing SOTA systems such as Oort fail
to perform as designed on common FL benchmarks.

A. Training Speed vs. Client Representation

Many FL systems aim to decrease the time taken to reach
a target accuracy by prioritizing the selection of fast clients
(i.e., system efficiency) [13] or increasing convergence speed
by preferring clients with higher data quality (i.e., statistical
efficiency) [10], [15]. This results in models that are biased
towards clients which possess faster devices and/or produce
data more frequently. Though these approaches improve time-
to-accuracy, they do not provide good coverage of the large
pool of clients’ data and fail to have good client representation.
This can be addressed with a selection strategy that is more
inclusive over the large population though inevitably results in
increased time due to the potential inclusion of stragglers [12].
It is evident that the two goals present two extremes of the
design space which FL designers need to explore and balance.
One extreme is represented by Oort which aggressively re-
duces training time by exploiting fast clients while ignoring the
diverse set of clients’ data distributions. As a result, the trained
models are less robust to variations in data distributions when
deployed in practice, where non-IID data is the norm rather
than the exception. It is intuitive to expect unfair selection to
produce a global model that does not cover the majority of
clients’ data [36]. At the other extreme, the designer could
skip the selection phase and invoke all available clients for
training to maximize client representation but this also comes
at the expense of increased resource wastage [12].
To balance the two goals, an FL system can perform client
selection in a manner that ensures high levels of client
representation. This would result in some reduction in time
to accuracy. In this work, we aim to leverage this concept
and address this gap in existing system designs with a novel
approach that places clients’ representation at the forefront of
FL system design. In the following, we empirically demon-
strate that SOTA systems fail to produce satisfactory models
for realistic FL scenarios and present our design of A2FL
which aims to enhance model quality and fairness through
maximizing clients’ representation in FL training.

B. Selection Phase and Client Representation

Commonly uniform random sampling is used by existing FL
systems to sample clients during the selection phase [1], [3],
[25]. The authors in [13] highlight that this naive method can
lead to selecting clients with random computation and com-
munication configurations which results in a large variation
in completion time. Consequently, this increases the training
time as the server must wait for stragglers to submit their
updates. On the contrary, Oort advocates biasing selection



0 25 50 75 100 125
Time (hours)

1.5

2.0

2.5

3.0

3.5
Te

st
 L

os
s

AlwaysAvail VarAvail

(a) Uniform IID

0 25 50 75 100 125
Time (hours)

2.5

3.0

3.5

4.0

Te
st

 L
os

s

AlwaysAvail VarAvail

(b) Label-Limited (non-IID)

Fig. 2: Influence of dynamic clients’ availability.

towards clients with fast devices to decrease the training time
in each round. This is undesirable because the trained model
may be biased towards a specific group of clients because the
model is trained mainly on this group’s data.
To empirically study the impact of the selection algorithm on
the final accuracy vs time-to-accuracy, we conduct experiments
on the state-of-the-art selection, Oort, using the Google Speech
dataset and train a speech recognition model (i.e., ResNet32)
in FL setting for 1,000 rounds. We use two partitions of the
data: (1) distributed uniformly the samples among clients from
all labels in the dataset (i.e., IID); (2) each client is constrained
only to a random ≈10% of the labels but data points for the
allocated labels are sampled uniformly (i.e., non-IID).
Impact of Clients’ Availability: In this work, we are inter-
ested in the impact of clients’ availability on FL performance
(or time-to-accuracy). Hence we set clients’ availability based
on profiles from a real-world trace of mobile users. To this
end, we analyze and extract profiles from a large-scale user
behaviour trace [11] involving more than 136K users of an FL
application over a week. Availability is set based on devices
being connected to a charge.We anticipate the availability to
have a significant impact on the data distributions of the clients
on which the model is trained that varies per round depending
on the currently online clients [11], [36].
To this end, we compare the execution of the Oort selec-
tion algorithm in two different conditions: i) all clients are
always available (AlwaysAvail); ii) the availability of the
clients varies over time depending on the dynamics of users’
availability profile (VarAvail). Fig. 2 shows the results for
the average test loss (i.e., averaged over the held-out test
dataset of the sampled test clients) vs the training wall-clock
time. We observe that in the IID case, the availability of the
clients has almost no impact on the average test loss obtained
in the two different approaches. This is because clients with
IID datasets possess data samples with similar distributions.
On the other hand, in the non-IID case, we observe that the
variable availability of the clients has a detrimental impact
on the achieved final test loss and hence the quality of the
obtained global model. In the following, we detail the design
of our proposed selection technique to mitigate this impact.

V. AVAILABILITY-AWARE FEDERATED LEARNING

We observe that in federated learning settings, clients’ data
distributions play a critical role in the quality of the model.
Therefore, especially in realistic non-IID cases, the model
must be exposed to most of the clients’ data samples (or
distributions) to increase its generalization abilities. The state-

Algorithm 1: Mixed Selection Algorithm
Input : Nt-Target Number of clients
Input : Cas-clients selected by alternative method
Output: Cs-Selected clients
Initialize Cs = Φ, Pt = Φ
Let S: the server and c: a client
On_Event Client_Join_Task

S: send an estimation of the period for the next
round;
c: use FAP and send availability probability pl
S: append pl to the probability list Pt = Pt ∪ pc;

On_Event End_Selection_Timer
S: add c in Cs all unavailable clients Pl < 0.5 ;
if len(Cs) < Nt then

S: select a random ca from Cas

S: add Ca to Cs if c /∈ Cs

end

of-the-art selection method (Oort) has a principled selection
method, however, by biasing it towards a certain group of
clients (e.g., faster ones) it does not fully address the selec-
tion problem. We propose that the selection method should
maximize the exposure of the model to clients’ data while not
sacrificing the system efficiency of the training (i.e., time-to-
accuracy). This can be achieved by prioritizing clients whose
availability for training in the system is limited while they
possess valuable data. In essence, this takes into account the
variable availability of clients as a key factor which perturbs
the global data distribution over time. In the following, we
present A2FL, an inclusive selection method for federated
learning which gives selection priority to the clients with
limited availability than the ones that can complete the training
faster (i.e., faster computation and/or network).
A2FL aims to mitigate the under-representation of various
clients’ data distributions during the FL training process
without adversely increasing training time. A2FL is a novel
selection method which prioritizes the least available clients
in the future. The goal is to train the model on a larger base
of data samples covering the diverse set of data distributions
represented by each unique client.

A. High-Level Design of A2FL

We present the design of A2FL by contrasting it with that
of Oort. At the high level, from a design perspective, both
selection methods introduce a client selection plug-in module
which is responsible for the decision logic on which clients
participate in the training rounds. A2FL consists of two parts:

1) the Future Availability Prediction (FAP) model which
produces the probability of client’s availability;

2) the Availability-based Prioritization (AP) module which
selects the clients based on clients’ availability.

In principle, Oort avoids the selection of slow clients leaving
them under-represented. On the other hand, A2FL improves
the representation of the full client population by taking into
account the clients’ availability in the future regardless of
their computational and/or communication capabilities. A2FL



selects ones that are highly unlikely to be present in future
rounds and then fills the remaining slots randomly with clients
selected by another method (e.g., Random or Oort). We next
describe the FAP module which uses a time-series model
to produce availability probability for each client and then
communicate the probability to the AP module.

B. Future Availability Prediction (FAP)

The FAP model needs to be of low computational overhead
on the clients’ devices. Therefore, a linear forecasting model
is used [37]. The model is trained locally on devices’ changes
in status (e.g., charging). To evaluate such a model, we
use Facebook’s Prophet tool [38] which trains a time-series
forecasting model using linear regression. We leverage the
Stunner dataset [39], which contains event traces collected
worldwide from a large-scale number of mobile devices. We
use a total of 135 devices after processing a total of one million
trace events in May 2018 by filtering out any device with less
than 1000 trace samples. For predicting availability, we use
the plugged and charging state to train a forecasting model for
each device. We use the first half of the devices’ samples for
training and the second half for testing. The results show that
the models predict future states with high accuracy with the
values of the mean absolute error (MAE), mean square error
(MSE), and coefficient of determination (R2Score) averaged
across devices, which are 0.027848, 0.011563, and 0.928258,
respectively. Notably, A2FL does not compromise users’ pri-
vacy and integrates with the existing techniques for secure
aggregation or differential privacy.

C. Availability-based Prioritization (AP) module

The main objective of A2FL is to improve all clients’ repre-
sentation in the training process by exposing the model to
the wide-spectrum distribution(s) of clients’ Non-IID data.
Algorithm 1 describes how the AP module selects clients in
each training round. Each client maintains and trains the FAP
model periodically on their local device state. For each client
c that joins the FL training task, the AP module sends the
client a future round time slot which can be estimated from
the historical round duration. Each client uses its FAP model
to infer its availability probability in the queried time slot.
When the selection phase comes to end, the AP module sorts
the online clients based on their availability probabilities P
(breaking ties with a random shuffle) and selects the least
available clients to start the round. Selected participants hold
off participating for a few rounds (e.g., 5 rounds) if they
successfully submit their updates, similar to [1].

VI. EVALUATION

In this section, we evaluate A2FL against the state-of-the-art
methods and show its benefits in heterogeneous settings.
Experimental Setting: We run a common speech recognition
FL benchmark using Google Speech dataset [40] to be trained
on ResNet model [41]. The clients are assigned realistic
device and network profiles collected from AI Benchmark [42]
and MobiPerf Trace [43], respectively. The experiments are

Oort A2FL Random

0 20 40 60 80 100 120
Time (hours)

2

4

6

8

Te
st

 L
os

s

(a) Oort’s Data Mapping

0 25 50 75 100 125
Time (hours)

4

6

8

Te
st

 L
os

s

(b) Non-IID Label-Limited

Fig. 3: Perf. of selection methods in IID vs non-IID cases

0 200 400 600 800 1000
Training Rounds

0

20

40

60

80

100

%
 o

f U
ni

qu
e 

Le
ar

ne
rs

(a) Percent. of unique clients

0 200 400 600 800 1000
Training Rounds

8

10

12

To
ta

l U
pd

at
es

(b) No. of aggregated updates

Fig. 4: Percentage of unique clients and number of aggregated
updates in the non-IID (Label-limited) case

event-driven in which the time is advanced based on the
computational and communication profiles of the devices.
That is the completion of training and upload/download of
the model are based on devices’ computation and networks
speeds, respectively. To obtain the quality metrics of training
the model, we use a cluster of 4 GPU servers and run
batches of 4 clients in parallel. We use PyTorch v1.8.0 as the
training backend [44]. Similar to Oort, YoGi [45] is used for
aggregation. The number of epochs, batch size, and learning
rate hyper-parameters are set to 1, 20, 0.005, respectively. The
per-round target number of clients is 10.
Data Partitioning: We use the default data mappings in
Oort [13]. And, we use more realistic Non-IID partition in
which clients can have only a random 10% of the labels (i.e.,
4 out of 35). Then, clients are assigned data samples from
each client’s pre-chosen labels uniformly at random.
Devices and Availability: clients’ devices are assigned a
random profile for inference from AI [42]. It is assumed that
the training cost is 3× of the inference [13]. Network latency
is profiled from MobiPerf [43] traces. For availability, we use
a real user trace of events collected, over a period of one week,
from over 136k devices from various countries [11].
Experimental Results: We use the same setup as in Oort [13]
and enable the real-world behavioural trace (i.e., VarAvail).
We compare A2FL, Random, and Oort selection in terms of
the average test loss versus the training time.
Accuracy Results: Fig. 3a and Fig. 3b show that, whether
using Oort’s data or non-IID data mapping, A2FL achieves no-
ticeable lower test loss compared to the other methods. A2FL
has slightly higher time compared to Oort which biases the
selection to lower round time impacting the quality negatively
esp. in the non-IID case. This shows that A2FL is a superior
selection method to enhance model quality irrespective of
clients’ data distribution.
Behaviour Analysis: Fig. 4a shows that both A2FL and
Random have a high rate of unique clients contributing to



model training compared to Oort. A2FL selects the least
available participants first which results in a higher total unique
number of clients which explains the better model over other
methods. By selecting, the least available clients first, A2FL
is able to harness their data early in the training to boost the
clients’ representation in the model especially when data is
non-IID. Fig. 4b shows that the total aggregated updates are
lower for A2FL, yet it achieves the best model quality. This
shows that having more aggregated updates is not the only
factor that contributes to the model convergence, rather the
uniqueness of the data points on the model is trained. Note
that, the lower number of updates for A2FL is because some
clients become unavailable after selection during the training.
We think the model quality can be improved if these updates
were incorporated. This improvement in reducing the number
of failed updates is left for future exploration.

VII. CONCLUSION

We study the impact of behavioural heterogeneity on federated
learning. We dissected the main cause for the low-quality
models trained by state-of-the-art selection methods in realistic
non-IID scenarios. Hence, we revisited the selection scheme
which plays a key role in model quality. To this end, we
propose A2FL to maximize the diversity of the clients’ pool
on which the model is trained. Experiments with a real FL
benchmark show A2FL improves model quality with minimal
training cost compared to existing methods.

REFERENCES

[1] K. Bonawitz et al., “Towards Federated Learning at Scale: System
Design,” in MLSys, 2019.

[2] P. Kairouz et al., “Advances and Open Problems in Federated Learning,”
arXiv 1912.04977, 2019.

[3] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ram-
age, and F. Beaufays, “Applied Federated Learning: Improving Google
Keyboard Query Suggestions,” arXiv 1812.02903, 2018.

[4] FedAI, “Federated AI Technology Enabler,” 2021.
[5] FaceBook, “High-speed library for applying differential privacy for

pytorch,” 2021.
[6] A. D. P. Team, “Learning with privacy at scale,” Apple Machine

Learning Journal, 2017.
[7] T. Hsu, H. Qi, and M. Brown, “Federated Visual Classification with

Real-World Data Distribution,” in ECCV, 2020.
[8] W. Li et al., “Privacy-Preserving Federated Brain Tumour Segmenta-

tion,” in Machine Learning in Medical Imaging, 2019.
[9] J. Jiang, Y. Zhou, G. Ananthanarayanan, Y. Shu, and A. A. Chien,

“Networked Cameras Are the New Big Data Clusters,” in Proceedings
of the ACM Workshop on Hot Topics in Video Analytics and Intelligent
Edges (HotEdgeVideo), 2019.

[10] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in MLSys, 2020.

[11] C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, and X. Liu,
“Characterizing impacts of heterogeneity in federated learning upon
large-scale smartphone data,” in The Web Conference, 2021.

[12] W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “SAFA: A
Semi-Asynchronous Protocol for Fast Federated Learning With Low
Overhead,” IEEE Transactions on Computers, vol. 70, no. 5, 2021.

[13] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Efficient
Federated Learning via Guided Participant Selection,” in USENIX OSDI,
2021.

[14] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally
weighted aggregation.,” IEEE TNNLS, 2019.

[15] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
in ICML, 2019.

[16] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the ob-
jective inconsistency problem in heterogeneous federated optimization,”
in NeurIPS, 2020.

[17] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, 2020.

[18] L. Yang, C. Beliard, and D. Rossi, “Heterogeneous Data-Aware Feder-
ated Learning,” in IJCAI - Federated learning workshop, 2020.

[19] R. Liu, F. Wu, C. Wu, Y. Wang, L. Lyu, H. Chen, and X. Xie, “No one
left behind: Inclusive federated learning over heterogeneous devices,” in
ACM SIGKDD, 2022.

[20] R. Balakrishnan, T. Li, T. Zhou, N. Himayat, V. Smith, and J. Bilmes,
“Diverse client selection for federated learning via submodular maxi-
mization,” in ICLR, 2022.

[21] T. Nishio and R. Yonetani, “Client Selection for Federated Learning with
Heterogeneous Resources in Mobile Edge,” ArXiv 1804.08333, 2018.

[22] A. M. Abdelmoniem, C.-Y. Ho, P. Papageorgiou, and M. Canini, “Em-
pirical analysis of federated learning in heterogeneous environments,” in
2nd Workshop on Machine Learning and Systems (EuroMLSys), 2022.

[23] K. Bonawitz et al., “Practical Secure Aggregation for Privacy-Preserving
Machine Learning,” in CCS, 2017.

[24] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[25] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv 1812.01097, 2018.

[26] F. Lai, Y. Dai, X. Zhu, and M. Chowdhury, “FedScale: Benchmark-
ing Model and System Performance of Federated Learning,” arXiv
2105.11367, 2021.

[27] Y. Ruan, X. Zhang, S.-C. Liang, and C. Joe-Wong, “Towards Flexible
Device Participation in Federated Learning,” in AISTATS, 2021.

[28] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated learning:
Convergence analysis and power-of-choice selection strategies,” arXiv
2010.01243, 2020.

[29] B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning Differ-
entially Private Recurrent Language Models,” in ICLR, 2018.

[30] A. M. Abdelmoniem and M. Canini, “Towards mitigating device het-
erogeneity in federated learning via adaptive model quantization,” in 1st
Workshop on Machine Learning and Systems (EuroMLSys), 2021.

[31] A. Arouj and A. M. Abdelmoniem, “Towards energy-aware federated
learning on battery-powered clients,” in ACM FedEdge Workshop, 2022.

[32] L. Li, H. Xiong, Z. Guo, J. Wang, and C. Xu, “Smartpc: Hierarchical
pace control in real-time federated learning system,” in RTSS, 2019.

[33] K. Wang, Y. Ma, M. B. Mashhadi, C. H. Foh, R. Tafazolli, and Z. Ding,
“Age of information in federated learning over wireless networks,” arXiv
2209.06623, 2022.

[34] Y. Jiang, J. Konečný, K. Rush, and S. Kannan, “Improving feder-
ated learning personalization via model agnostic meta learning,” arXiv
1909.12488, 2019.

[35] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated Learning on Non-IID
Data Silos: An Experimental Study,” arXiv 2102.02079, 2021.

[36] J. Huang, C. Hong, L. Y. Chen, and S. Roos, “Is Shapley Value fair?
Improving Client Selection for Mavericks in Federated Learning,” arXiv
2106.10734, 2021.

[37] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice, 2nd edition. Melbourne, Australia: OTexts, 2018.

[38] S. J. Taylor and B. Letham, “Forecasting at scale,” PeerJ Preprints
5:e3190v2, 2017.

[39] Z. Szabó, K. Téglás, A. Berta, M. Jelasity, and V. Bilicki, “Stunner: A
Smart Phone Trace for Developing Decentralized Edge Systems,” in 19th
International Conference on Distributed Applications and Interoperable
Systems (DAIS), 2019.

[40] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” ArXiv 1804.03209, 2018.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016.

[42] A. Benchmark, “Performance ranking,” 2021.
[43] M-Lab, “MobiPerf: an open source application for measuring network

performance on mobile platforms,” 2021.
[44] Pytorch.org, “PyTorch,” 2022. https://pytorch.org/.
[45] S. Ramaswamy, O. Thakkar, R. Mathews, G. Andrew, H. B. McMa-

han, and F. Beaufays, “Training Production Language Models without
Memorizing User Data,” arXiv 2009.10031, 2020.


