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Abstract—As data-parallel applications process more complex 

data, the dependencies between computation jobs in a multi-

stage job also become more complicated. However, most of the 

existing scheduling solutions primarily rely on total bytes sent 

(job size) to differentiate jobs where jobs with fewer bytes sent 

are prioritized over the larger ones. This approach overlooks the 

fact that jobs may consist of multiple computation stages, and 

that the completion of a computation job stage depends on the 

completion of other jobs’ stage. In this paper, we present a 

coflow scheduler of multi-stage jobs that minimizes the average 

job completion time. Our solution prioritizes jobs based on the 

multi-faceted characteristics of multi-stage job structure per 

stage, instead of total bytes sent. Our experiments show that our 

approach provides twice the performance of existing solutions 

on average and by four times in bursty traffic scenario.   

I. INTRODUCTION  

Today, modern distributed parallel computing frameworks 

(E.g. MapReduce[18], Dryad [21]) are commonly employed 

in datacenters to process distributed computing jobs for data 

analyzation or queries. These frameworks typically have 

multiple successive computation stages.  By multiple stages 

we refer to a pipeline of successive computation phases where 

a phase only begins processing when the previous 

computation stage completes and the data flows generated by 

the previous computation stage also complete. Each 

computation stage usually consists of multiple tasks that are 

processed in parallel.   

Data transfers between two successive stages usually 

involves a collection of flows with the same performance 

objective, which is referred as coflow [4]. Coflow provides 

context to this collection of flows, where data transfer 

between two successive stages complete when all its flows 

complete. Studies in [3-9, 34, 36, 37] show that faster data 

transfers will lead to shorter completion time of a computation 

stage. In other words, a task only complete faster when all its 

flows complete faster, and therefore a job stage completion 

time is shorter when all its tasks in its computation stage 

complete faster. In this paper, our study focuses on 

minimizing job computation time (JCT) to complete flows 

between two successive computation stages. 
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A study from a large production datacenter in Microsoft 

[28] points out that job structures come in different shapes, 

such as “W” shape, tree shape, chain shape, inverted “V” 

shape and more complex shapes with multiple roots (outputs). 

Moreover, this study also reports that a job can consist of 

more than ten stages. The varied attributes of a job structure 

can result in a job generating different amounts of bytes at 

different stages. Currently, many of the existing scheduling 

studies [3-9, 11-14, 34,36, 42-47]  do not consider the shape 

of the job structure and the effect of dependencies between 

tasks within the same job.  

Most current schemes minimize average job (or coflow) 

completion time by implementing some version of a 

scheduling scheme based on the total amount of bytes sent. In 

other words, in these schemes a job is scheduled according to 

its size, the total bytes sent. These total-bytes-sent (TBS) 

based schemes compare the total accumulated bytes sent to a 

set of thresholds to determine which job should be scheduled 

first. For instance, in [11], a job with fewer bytes sent are 

scheduled earlier than one having sent more.  

However, we observe that scheduling a job simply based on 

TBS without considering what stage it is in can punish jobs 

that transmit more bytes in the early stages by scheduling 

them later for the subsequent stages even when these jobs send 

almost no data in subsequent stages. Moreover, TBS based 

strategy also punishes jobs that transmit more bytes in some 

stages but fewer bytes in other stages (on-and-off Job) [19]. 

Further, conventional TBS based approaches also do not 

distinguish that a job with many stages but generate small 

amount of bytes per stage from a job with few stages that 

generate a large amount of bytes, especially if both jobs 

generate similar amount of TBS. Therefore, schemes that do 

not consider stages may result in longer completion time for 

jobs that include small delay sensitive ones.  

Additionally, in some special cases a new computation 

stage can begin processing without having all tasks from the 

previous stage complete. This is because some tasks may 

complete faster than other tasks in the same stage. Thus, the 

task in the next stage can begin processing as soon as its 

dependent tasks complete (e.g. a job with multiple parallel 



 

 

chain shape structure). This is also not captured in TBS based 

schemes. 

For these reasons, conventional TBS based schemes do not 

account for the multi-faceted characteristics of multi-stage job 

setting. In our study, we identify there are three dimensions to 

coflow in this setting: the horizontal dimension (number of 

flows per stage), the vertical dimension (in this paper the 

maximum size of flows in each stage, while in [3-9] it refers 

to the aggregated bytes), and the depth dimension (number of 

computation stages). Previously discussed most TBS based 

approaches are not sensitive to the nature of depth  dimension 

of multi-stage job structure.  

In this paper, we present Gurita, a scheduling scheme to 

coordinate coflows of a multi-stage job that incorporates the 

multi-dimensional characteristics of multi-stage job, 

achieving lower average JCT. To design our solution, we first 

identify the nature of the multi-stage job scheduling problem. 

Current solutions [3-9, 12-14] generally reduce the coflow 

scheduling problem to concurrent open shop problems 

(COSP). However, COSP does not accurately describe how 

jobs are processed in the network (§ III.A). For this reason, we 

model our job scheduling problem as a Flexible Flow Shop 

Multi-Stage jobs Problem (FFS-MJ), which is rooted in the 

widely studied Flexible Flow Shop Problem (FFS) [30, 32, 

33]. The design of our job scheduler leverages wisdom and 

insights from earlier studies of FFS.  

One of the key insights to solving FFS is to obey the 

classic Johnson’s rules [30], that is, system performance can 

be improved by prioritizing coflows of jobs that are least 

likely to delay the completion of other jobs. With this insight, 

we define a set of rules (Gurita’s rules) to guide our job 

scheduling design. First, we propose Least Blocking Effect 

First (LBEF) based scheme for the coordination of coflows in 

multi-stage jobs according to per stage blocking effect, that is, 

a job’s likelihood to delay the completion of  another job. In 

addition, we also incorporate the concept of critical path to 

further minimize job completion time.  To achieve scalability, 

the scheme is designed without resorting to a centralized 

controller to avoid high overheads in managing a centralized 

system. Further, the scheme does not require modification of 

switch hardware, making the scheme easier to deploy.  

 To minimize the average JCT, Gurita schedules coflows 

according to a job’s least blocking effect per stage. In other 

words, the scheduler prioritizes coflows in different job stage 

that are least likely to delay the completion of other jobs in a 

given stage. Initially, a job is assigned the highest priority. 

The priority is then progressively adjusted in each stage 

according to its impact on other jobs, We note that 

information on job (e.g. task dependency structure within a 

job, coflow size, when flows are generated, etc.) is unknown 

a priori, which makes determining coflow stage difficult. To 

address these challenges, Gurita estimates the job blocking 

effect by utilizing available information. This includes 

information received on total bytes sent per stage, number of 

flows that are currently transmitting data, etc. By doing this, 

Gurita not only helps small multi-stage jobs complete earlier, 

it also improves the performance of on-and-off jobs and larger 

jobs that transmit bytes early, resulting in smaller average 

JCT. Another advantage is that priority can be adjusted 

without introducing TCP out-of-order problem.  

We implement Gurita in a simulator utilizing real data 

traces of coflow traffic collected from 3000 machines (150-

racks) in Facebook datacenter [4] with two industrial 

benchmarks: TPC-DS query [5] and Facebook Tao structure 

[10]. Our result shows that Gurita outperforms a baseline and 

existing solutions that utilize accumulated total bytes sent, up 

to 2 ×  and 1.8 ×  faster JCT on average respectively (for 

smaller jobs 8.5×  compared to a baseline (Per Flow Fair 

Sharing based approach) and 5 ×  faster relative to other 

existing solutions). At the same time, Gurita achieves 

performance comparable to that obtained from a centralized 

solution. For further  evaluation,  we  consider  bursty  traffic 

 
Figure 1. a) An illustration of a three stages job . b) Paths that described the 

dependency between coflows in a job, the order in which coflows must 

complete, and CCT of each coflow .     

scenario, where jobs arrive in short interval followed by large 

interval with no arrival. Our experiment shows generally 

Gurita improves JCT by up to 2× compared to the baseline, 

while achieving 1.8 ×  improvement relative to existing 

decentralized solutions. Moreover, Gurita’s performance 

without global view matches the performance of an existing 

centralized solution with global view. 

Our contributions. We make the following contributions: 

1. We identify the nature of multi-stage job scheduling 

problem and model the problem as FFS-MJ. We prove this 

problem to be an NP-Hard problem. We also identify there 

are multi dimensions to multi-stage job: horizontal, vertical, 

and depth. This provides an insight into the nature of multi-

stage job. 

2. We then define Gurita’s rules to guide our design and 

propose multi-stage job scheduling schemes (under both 

ideal conditions and in practice) without resorting to a 

centralized controller. Our design also takes advantage of 

the concept of critical path in a job, which describes a 

sequence of a job’s completion time for every stage, 

summing up the JCT. 

3. We demonstrate the benefits from considering the 

granularity of job characteristics at different stages in our 

scheduling through simulation. 

4. We address practical challenges using Gurita (e.g. 

starvation problem) encountered while designing our 

scheduler.  

II. BACKGROUND, MODEL, AND MOTIVATION 

Coflow communication pattern. A coflow is a collection of 

flows between two groups of machines [15]. In other words, 

a) b) 



 

 

it is also a group of flows between two set of tasks in two 

successive computation stages during shuffle phase. Shuffle 

transfers the output from the previous stage to the next one. 

The machines that send the outputs are called senders and the 

machines receiving the data are called receivers. In a coflow, 

each receiver communicates with one or multiple senders to 

complete a single coflow [14]. In multi-stage scenario, a 

sender may function as a receiver when the sender invokes 

new (children) senders, such that the parent can only be 

processed after all of its children complete.  

DAG structure. Dependencies between coflow in a multi-

stage job can be modelled as a Directed Acyclic Graph (DAG) 

[5,27]. A parent coflow only completes when all coflows it 

depends on complete. The relationship between coflows of 

the same job can be described as follows. Represent each job 

as DAG 𝐺 = (𝐸, 𝑉) , where a vertex in 𝑉  is a coflow and 

edge (𝑢, 𝑣) ∈ 𝐸  represents a dependency between two 

coflows 𝑢  and 𝑣  in 𝑉, where 𝑢‘s completion depends upon 

𝑣’s completion (Figure 1.a).   

Computation stages. A stage is a computation step in 𝐺, such 

that 𝑖𝑡ℎ  stage is the 𝑖𝑡ℎ  computation step and 𝑖𝑡ℎ  stage must 

be completed before (𝑖 + 1)𝑡ℎ stage can be processed. Further, 

a job may have one or more coflows in a stage [5]. 

Jobs in production. As observed in Microsoft datacenter 

[28], a job is typically made up of multiple tasks, and job 

dependency structure may come in different shapes, such as 

“W” shape, tree shape, chain shape, inverted “V” shape or 

more complex shapes with multiple outputs (roots). 

Approximately 40% of jobs exhibit a tree structure. 

Additionally, a job may have multiple parallel chains of 

dependencies and the average depth of a job is five stages and 

may go to more than ten stages. This observation offers an 

explanation in [10, 15, 19] as to why a job may generate 

different amount of bytes at different stage. 

Settings. To analyze the job characteristic, we abstract the 

datacenter network as a non-blocking datacenter fabric 

connecting two sets of 𝑀 machines [4, 5], where the ingress 

machines (senders) generate data flow and egress machines 

(receivers) are the destination. This abstraction allows a 

simpler conception for analysis. However, we do not impose 

this concept in our design and evaluation. In our design and 

evaluation, we consider the more realistic scenario where the 

network in datacenter can be bursty and jobs compete for 

network resources (e.g. switch) [17, 23].   

Motivation example (Figure 2). Consider job A transmitting 

10, 1, 1, and 1 units size of data at stage 𝒮, 𝒮 + 1, 𝒮 + 2  and 

𝒮 + 3 respectively. We have single stage job B, C, and D each 

transmitting 2 units size data. The processing rate is 1 unit size 

per unit time.  In the first scenario, these jobs are scheduled 

using TBS based scheme which prioritizes jobs with less TBS. 

We have job A complete after 𝒮 + 3  with JCT = 19 units 

time. Job B, C, and D each has JCT = 2 units time. The 

average JCT is 
19+2+2+2

4
=  6.25 units time. In the second 

scenario, the scheduler prioritizes jobs according to how 

much data is transmitted per stage instead of TBS. Job A 

completes with JCT = 13 units time and Job B, C, and D each 

has JCT = 3 units time. The average JCT in the second 

scenario is 
13+3+3+3

4
= 5.5 unit time, which is lesser than the 

JCT in the first scenario. 

III. MULTI-STAGE COFLOW  

Gurita coordinates jobs according to how a job may impact 

(or delay) the completion of other coflows. Like prior works 

[3-13], Gurita assumes that coflow IDs can be obtained from 

upper layer applications. However, CODA [12] shows that it 

is possible to infer flows of a coflow using machine learning. 

Gurita’s scheduler resides in one of the many receivers of a 

coflow and coordinates all the receivers in order to manage 

the flows in each receiver. Finally, scheduling decisions are 

enforced in the network by employing a built-in function 

commonly available in today’s commodity switches, namely 

strict priority queuing (SPQ), which means Gurita is 

deployable friendly. 

 

   
Figure 2.  Illustration on the disadvantages of stage agnostic scheme on JCT. 

Scenario 1 demonstrates the results of solution based on Shortest Job First. 

Scenario 2 demonstrates the results of scheduling solution that takes into 

account the multi-stage attribute of jobs. 

 
Figure 3.  The illustration of modeling topology of datacenter network in 

Flexible Flow Shop Problem. Machine 𝑚𝑖,𝑗 is the 𝑗𝑡ℎ machine in layer 𝑖.  

A. Problem Formulation 

Consider the following multi-stage job scheduling 

problem with  𝑛 jobs in a system indexed by 1, 2, …,𝑛. Let 𝑇𝐽 

denotes the JCT of job 𝐽 ; the problem is formulated as 

follows. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑇𝐽

𝑛

𝑗=1
                                          (1) 

𝑠. 𝑡.    𝐶(𝒮) ≻ 𝐶(𝒮 + 1) ,     for  𝒮 > 0,            (1. 𝑎) 

where 𝐶(𝒮) denotes coflow 𝐶 in computation stage 𝒮 of job 

𝐽 . Constraint (1.a) describes the dependency between two 

coflows in 𝐽 such that the completion of 𝐶(𝒮 + 1) depends on 

the completion of 𝐶(𝒮). This ensures that the parent coflow is 

processed only after its child flows are complete.  

 Unlike a single-stage job scenario, where JCT is 

determined by its coflow with the slowest flow completion 

time, JCT of a multi-stage job is influenced by the number of 

stages in a job and JCTs in each stage. Let Φ𝑆𝐸𝑇(𝐽) denote a 

set of paths in job 𝐽, where each path Φ𝑖 ∈ Φ𝑆𝐸𝑇 (𝐽) describes 

the order of tasks in which they must be completed from leaf 



 

 

nodes (tasks in stage 1) to root nodes (tasks in final stage) in 

a job, as illustrated in Figure 1. Let 𝐶𝑇(Φ𝑖) denote the total 

time required to deliver data between tasks in path Φ𝑖 . Thus, 

minimizing JCT is equivalent to  

𝐽𝐶𝑇 = 𝑚𝑖𝑛  𝑚𝑎𝑥(𝐶𝑇(Φ𝑖),   ∀Φ𝑖 ∈ Φ𝑆𝐸𝑇(𝐶)). 

In other words, the concept of critical path is an expression 

that consists of a sequence of coflow completion time (CCT) 

that covers the JCT. It also offers a way to relate CCT at 

different stages from JCT perspective. Therefore, when the 

CCT of a coflow on critical path is increased, the job 

completion time is also increased. Based on this observation, 

coflows on critical paths of different jobs should not be 

scheduled together. This insight is incorporated in our design 

to solve problem (1). 

 To design an appropriate scheduling scheme, we need to 

understand the nature of the problem of scheduling jobs. 

Initial studies on coflow scheduling [4, 9] reduce the coflow 

scheduling problem to an NP-Hard problem -  concurrent 

open shop problem (COSP) [2] - consisting of  𝑛 jobs and 𝓂 

layers of machines, where jobs correspond to coflows and 

machines can be interpreted as egress ports of datacenter 

fabric (or switches). The objective is to minimize the total job 

completion time. Since solving COSP is very difficult [2, 7], 

the current practice [4, 5, 9,12, 34] simplifies COSP to 2 

layers ( 𝑚 × 2 datacenter fabrics). In the simplification, a 

datacenter fabric is assumed to be a non-blocking big switch, 

where each machine in COSP represents NIC cards at the end-

host (sender and receiver ends). Thus, this setup allows 

coflow scheduler to be concerned only with scheduling a set 

of flows of a coflow at the senders’ end such that the waiting 

time for resources at the receivers’ end is minimized.  

However, delving deeper into the nature of COSP, we 

realize that it is not concerned with the order in which jobs are 

processed first [2]. For example, a flow can be first processed 

at a receiver, and then at the sender, which is not the order in 

which a flow is processed in the network. The processing 

order in the network should be: the flow is processed at the 

sender before it is processed at the receiver. In other words, 

COSP allows flow operation to be processed at a random 

order. This is because COSP is formulated for scheduling 

problem in manufacturing where products are processed in 

multiple assembly lines and can be moved between assembly 

lines. For this reason, although there have been numerous of 

attempts to solve COSP [31, 32], the insights gained from 

these endeavors do not apply to job scheduling.  

 Therefore, in order to design an effective multi-stage job 

scheduling scheme, we first must understand the nature of the 

job scheduling problem and identify what existing problem 

the multi-stage job scheduling problem should be reduced to. 

We identify a class of Flexible Flow Shop Problem (FFS) [30, 

32, 33] that not only captures the characteristics of scheduling 

jobs, but also reflects network processing order, i.e. each 

operation (how coflow is processed) must be performed in a 

sequential order according to the order of the sender and then  

the receiver. The objective is to minimize the average JCT, 

while considering the constraints of the order of when coflows 

can be processed at different machines. Since flow shop 

scheduling has been widely studied in operation research, 

reducing job scheduling problem to this problem allows us to 

naturally exploit the wealth of insights and lessons learned 

from existing solutions.  

B. Flexible Flow Shop Problem for Multi-Stage Jobs  

FFS only considers the scenario of a single stage job. 

Thus, we extend the FFS problem to Flexible Flow Shop 

Problem with Multi-stage Jobs Problem (FFS-MJ). In this 

section, we first formally define FFS-MJ. Then, we convert 

intra multi-stage job scheduling to FFS-MJ. 

Definition 1: Flexible Flow Shop Problem with Multi-stage 

Jobs Problem (FFS-MJ). Consider a set of 𝑛 independent jobs 

𝐽1, 𝐽2, … , 𝐽𝑛  , where each Job 𝐽𝑖  consists of a set of coflows. 

These jobs have to be scheduled through multiple layers of 

processing, where each layer is made up of parallel machines 

(Figure 3). 

We first define the relationship between two coflows. Let 

𝐶(𝒮) denote coflow 𝐶 ∈ 𝐽𝑖 in computation stage 𝒮. If coflow 

𝐶(𝒮 + 1)  is the parent of 𝐶(𝒮) , then, there is a precedence 

constraint requiring the completion time of 𝐶(𝒮) before its 

parent coflow 𝐶(𝒮 + 1). In other words, there is a dependency 

between coflows in 𝐽𝑖 that forms DAG such that a parent task 

can only be processed after all its children complete. The 

relationship between parent and child can be interpreted as 

that of coflows each belonging to different sequential 

computation stages.  

Next, we define how a coflow is processed. Every coflow 

𝐶(𝒮) ∈ 𝐽𝑖 is processed in a set of parallel operations 𝑂(𝐶(𝒮)). 

Namely, 𝑂(𝐶(𝒮))  can be interpreted as a set of operations 

processing a set of flows of a coflow 𝐶  at stage 𝒮 . Thus, 

𝑂(𝐶(𝒮 + 1)) cannot be processed until operations in 𝑂(𝐶(𝒮)) 

complete.  

Here, we define how a machine processes an operation in 

𝑂(𝐶(𝒮)). Each machine, which can be interpreted as a port in 

the big switch, can only process at most one operation at a 

time, such that the (𝐶(𝒮)) operation must be processed at one 

of the machines in layer 𝒮.  

Finally, the objective is to arrange the job sequence such 

that the aggregated job completion time is minimized. ∎ 

NP-Hard problem. We show the hardness of the FFS-MJ.  

Theorem 1. FFS-MJ is NP-Hard.  

Proof. Let 𝛨(𝒮1, 𝒮2, … , 𝒮𝑚) be FFS-MJ problem and problem 

𝛨  has 𝑚  stages to complete, such that stage 𝒮𝑖  must be 

completed before 𝒮𝑖+1 can be processed, for 1 ≤ 𝑖 < 𝑚. We 

partition problem 𝛨 into smaller problems 𝛨(𝒮1), 𝛨(𝒮2), …, 

and 𝛨(𝒮𝑚), where these problems are solved individually. 

However, they must be processed one after another in the 

sequence according to the order of its stage, such that  

𝛨(𝒮𝑖+1)  is solved only after 𝛨(𝒮𝑖)  completes, for 𝑖 =
1, 2, … , 𝑚 − 1. Since solving each 𝛨(𝒮𝑖) is NP-Hard [2, 31, 

32], 𝛨(𝒮1, 𝒮2, … , 𝒮𝑚) is also NP-Hard. ∎  

Theorem 1 implies that solving multi-stage job scheduling 

problem is equivalent to solving FFS-MJ, which is also an 

NP-hard problem.  

Reducing multi-stage job problem to FFS-MJ. In 

Definition 1, we have described how multi-stage job is 

mapped to FFS-MJ. To reduce datacenter network to multiple 

layers of parallel machines in FFS-MJ, conceptually machines 



 

 

in 𝑚𝑡ℎ and 𝑚-1𝑡ℎ layer in FFS-MJ can be viewed as receivers 

and senders respectively in the big switch abstraction,  for 1 <
𝑚 < 𝑀. M denotes total number of machines. 

Identifying the nature of multi-stage job scheduling 

problem provides us with a direction and intuition to solve the 

problem. However, intuition alone is not sufficient. In order 

to properly design a scheduler, we must also understand the 

job and coflow characteristics in multi-stage jobs setting. 

C. Characteristics in Multi-Stage Job 

In this section, we investigate job characteristics in a 

multi-stage setting by analyzing data collected from a 

production datacenter in Facebook [4, 5] and make the 

following observations. 

(𝑖) Flows at the leaf node position of any job structures are 

the first flows to be processed. 

(𝑖𝑖) A receiver may have a large number of parallel senders 

transmitting data from different ports simultaneously. This 

means the aggregate traffic from this group of flows may 

quickly create bottleneck and increase completion times of 

other jobs.  

(𝑖𝑖𝑖)  The time to complete a single stage is determined by the 

amount of bytes sent is processed and the processing speed in 

each stage. Thus, the larger numbers of bytes sent per stage or 

the lower processing speed can lead to longer completion 

times. Based on these observations, a coflow in this setting 

has these following dimensions: horizontal (the width of 

coflow per stage), vertical (the largest flow size in a coflow 

per stage), and depth (the number of stages that needs to be 

completed). This revelation provides us with an important 

insight for designing our scheduling scheme. 

IV. GURITA’S RULES AND SCHEDULING SCHEME 

In this section, we present our Gurita multi-stage job 

scheduling scheduler. We begin with rules that provide the 

foundations of our solution. We then design our scheduler 

using these rules and observations made in the previous 

section.    
A. Gurita’s Rules 

Since FFS has been widely studied and FFS-MJ is rooted 

in FFS, reducing multi-stage job scheduling to FFS-MJ allows 

us to design a scheduler that leverages insights observed from 

existing studies on FFS [30, 31, 32]. Most solutions for FFS 

obey the classic Johnson rules [30], which are: (𝑖) minimize 

resource idle time, (𝑖𝑖) make the machine available quickly to 

reduce waiting time for resources is minimized, (𝑖𝑖𝑖) avoid 

blocking other jobs, and (𝑖𝑣) avoid tardiness. Here, tardiness 

of a job is comparable to the amount of time that elapses 

between when a job is supposed to complete (e.g., due date) 

and when it actually completes. 

To illustrate the impact of the blocking concept proposed 

by Johnson (Figure 4), consider a single stage job A, B, C, and 

D each transmitting data 6 units size. Job A has three coflows 

each consist of 2 units size, while job B, C, and D have two 

coflows each of 3 units size. Thus, all jobs have the same total 

size. The processing rate is 1 unit size per unit time. In the 

first scenario, job A has three coflows blocking coflows from 

job B, C, and D. Job A has JCT = 2 units time, while job B, 

C, and D have JCT = 5 unit times. The average JCT is 4.25 

units time. On the other hand, in the second scenario, if Job 

B, C, and D are prioritized over job A, then we have job B, C, 

and D each incurs JCT = 3 units time and job A incurs JCT = 

5 unit times. The average JCT = 3.50 units time, which is 

lower than the JCT in the first scenario.   

Next, we describe how insights observed from Johnson’s 

rules and our interpretations for Gurita.  

(𝑖)  Since a multi-stage job is processed through multiple 

layers of machines (e.g. server nodes), a longer processing 

time in a layer can lead to longer idle times of machines in the 

next layer. Based on Johnson’s first rule, the key to reducing 

machine idle time is to quickly complete the job’s stage in 

predecessor machines. The time to process at each layer can 

be sped up by prioritizing a job’s stage that consist of small 

number of small size flows because they can be processed 

quickly.  

(𝑖𝑖)  Further, consistent with Johnson’s second rule, 

prioritizing a stage consisting a small number of small size 

flows means machines can be made available quickly.  

 
Figure 4. Example of blocking Impact. 

(𝑖𝑖𝑖) We observe that a job’s stage may block other job(s) 

vertically or horizontally. Vertical blocking is caused by a set 

of elephant flows in a job stage causing another job stage to 

wait longer for elephant flows to complete. Horizontal 

blocking is caused by a job stage consisting of a large number 

of concurrent flows that require more resources, resulting in 

the blocking of another job stage. Finally, the worst case 

scenario is a combination of horizontal and vertical blocking. 

Thus, in accordance to Johnson’s third rule, a job’s stage that 

block a other job stage (either horizontal, vertical, or both) 

should be assigned lower priority. 

 (𝑖𝑣) Last, as pointed in Johnson’s final rule, tardiness can be 

avoided by prioritizing a job stage with the smallest slack 

(e.g., slack = time remaining before due date - remaining 

processing time). This means a job that has reached the final 

stage of its completion should be quickly completed to further 

minimize a job completion time and to avoid causing delays 

to other jobs.  

Based on these applications of Johnson’s rules, we 

propose Gurita’s rules.  

Rule 1. To avoid machine waiting for jobs and jobs waiting 

for a resource’s availability, the scheduler should prioritize 

job stages that consists of smaller numbers of shorter flows. 

Rule 2. To avoid horizontal blocking, the scheduler prioritizes 

job’s stage that consist of smaller number of flows. To avoid 

vertical blocking, scheduler prioritizes job stage that consist 

of short flows.  



 

 

Rule 3. Jobs in the final stage should be prioritized over those 

that are not in final stage.  

Rule 4. Based on our observations discussed earlier, blocking 

coflows on a critical path increases job completion time. 

Therefore, coflows on critical path should be prioritized over 

those that not on critical path. 

B. Coflow Scheduler 

Here, we design our scheduler by considering two 

scenarios: ideal condition and in practice. In the ideal 

condition scenario, the scheduler is assumed to operate with 

all information on coflow and job structure available ahead of 

time (e.g. flow size, coflow arrival time, number of flows, 

number of stage, etc.). This assumption allows us to 

holistically apply the Gurita rules and insights to the initial 

design. Following this, we adjust the design taking into 

account more realistic conditions in practice, where some 

information is not available ahead of time.  

We begin by presenting the formulation of the coflow 

blocking effect Ψ𝐽
𝐶  of coflow 𝐶  in job 𝐽 , and then we 

formulate job blocking effects Ψ𝐽(𝒮)  at stage 𝒮  with Ψ𝐽
𝐶 . 

First, Ψ𝐽
𝐶  is formulated as follows. 

Ψ𝐽
𝐶 = 𝛽 × 𝑤𝐶 ×  𝑓𝑚𝑎𝑥

𝐶 × 𝔽𝐶 ,                        (2) 

Here, 𝛽 denotes a weight factor for a coflow that reaches final 

stage (Gurita’s 3𝑟𝑑  rule), where 𝛽 = 1 −
𝒮̂

𝑡𝑜𝑡𝑎𝑙_𝒮
 and 𝒮̂ denote 

the number of completed stages and 𝑡𝑜𝑡𝑎𝑙_𝒮 describes the 

total number of stages required to complete a job. 𝛽 decreases 

as the job’s stage approaches the final stage. Moreover, the 

two dimensions of coflow,  𝑓𝑚𝑎𝑥
𝐶   and 𝔽𝐶  denote the size of the 

largest flow and the total number of flows in coflow 𝐶 

respectively. We have  𝑓𝑚𝑎𝑥
𝐶 × 𝔽𝐶 to model the horizontal and 

vertical blocking effect per stage (Gurita’s 2𝑡ℎ rule). The area 

under  𝑓𝑚𝑎𝑥
𝐶 × 𝔽𝐶 approximates the severity of blocking effect 

with both dimensions combined. Additionally, since the 

blocking time duration is affected by flow size (Gurita’s 1𝑡ℎ 

rule), Ψ𝐽
𝐶  is adjusted with 𝑤𝐶 , which is expressed as follows. 

𝑤𝐶 = {
1 − 𝛾,               𝛾 < 1

0.1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
,  

for  𝛾 = 𝛿
𝔽̅𝐶

  𝑓𝑚𝑎𝑥
𝐶 , where 1 > 𝛿 > 0 is constant and 𝔽̅𝐶  denotes the 

average flow size in a coflow. Here,  𝑓𝑚𝑎𝑥
𝐶  can be interpreted 

as the worst case scenario and 𝑤𝐶  normalizes the blocking 

effect of  𝑓𝑚𝑎𝑥
𝐶  relative to other flows in 𝐶. Thus, if  𝑓𝑚𝑎𝑥

𝐶  is 

large and 𝛾 → 1, 𝑤𝐶  means a coflow may further delay the 

completion of other coflows from different jobs.  

Next, per stage job blocking effect Ψ𝐽(𝒮) with Ψ𝐽
𝐶  can be 

formulated as follows. First, we consider the case when there 

is only a coflow in stage 𝒮, we have  Ψ𝐽(𝒮) =  Ψ𝐽
𝐶  for 𝐶 ∈ 𝐽(𝒮). 

Otherwise,  

Ψ𝐽(𝒮) = 𝑚𝑎𝑥(Ψ𝐽
𝐶) , ∀𝐶 ∈ 𝐽(𝒮), 

for |𝐶| > 1. Then, at the abstract level, Ψ𝐽(𝒮) is utilized to 

coordinate coflows such that coflows with smallest value of 

Ψ𝐽(𝒮) are scheduled ahead of coflow with a higher blocking 

effect.  

To satisfy Gurita’s 4𝑡ℎ  rule, we first approximate the 

𝐶𝐶𝑇 ≈
 𝑓𝑚𝑎𝑥

𝐶

𝐵
 of each coflow and then we assign it to each vertex 

in DAG 𝐺 discussed above respectively. Here, 𝐵 denotes the 

processing rate. Then, the critical path in a job can be 

determined using Breath First Search [24].     

However, in practice, information on job such as flow size, 

coflow size, and job structure is usually unknown a priori, 

which makes determining Ψ𝐽
𝐶 and satisfying Gurita’s 4𝑡ℎ rule 

difficult. To address this problem, we demonstrate in the 

following section how we adjust the initial design of per stage 

blocking effect based on available information on job without 

resorting to a centralized controller.  

From concept to practice. The unavailability of information 

makes scheduling coflows of different jobs challenging. 

Another challenge is enforcing the scheduling scheme 

without requiring the scheme to resort to a centralized 

controller and modifications to existing hardware (e.g., 

switches). First, we describe how to estimate Ψ(𝐶𝒮) when 

information on job is unknown a priori. Gurita addresses this 

problem by estimating Ψ𝐽
𝐶  with information that becomes 

available at the receiver end, such as number of open 

connections between senders, amount of bytes received by 

each flow, and the aggregated number of bytes received of a 

coflow.  Here,  this  information   can  be  transparent  at   the 

Algorithm 1: Least-Blocking Effect  First (LBEF) 

1. 𝐽 ̅   // set of multi-stage Jobs 

2. Procedure  Gurita_scheduler ( 𝐽 ̅) 

3.    𝐽   // empty array to keep track Jobs 

4.    for each coflow 𝐶 ∈ 𝐽 ∈ 𝐽 ̅do 

5.           𝐶(𝒮) = stage( 𝐽 )   // The stage of cofow 𝐶 

6.           Ψ𝐽
𝐶 = compute_blocking_effect ( 𝐶(𝒮) ) 

7.           Compute Ψ𝐽(𝒮)  

8.           𝐽 ←  Ψ𝐽(𝒮)       //  insert Ψ𝐽(𝒮) to 𝐽 

9.     end for  

10.     Sort(𝐽)  ⊳ Sort in descending order according to Ψ𝐽(𝒮) 

11.     for each 𝐶(𝒮) ∈ 𝐽 do 

12.         Process ∀𝑓 ∈ 𝐶(𝒮) // Process all flow in  𝐶(𝒮) 

13.      end for 

14. end procedure 

15. Procedure  compute_blocking_effect (𝐶(𝒮)) 

16.      Utilizing eq. (3) to compute and return Ψ𝐽
𝐶  

17. end procedure 

shim-layer between TCP/IP stack (or VMs) and the link-layer 

(or Hypervisor) by leveraging the NetFilter framework [22], 

which is an integral part of Linux OS. Netfilter hooks are 

attached to the data path in the Linux kernel just above the 

physical interface, allowing Gurita to intercept outgoing and 

incoming packets without modifying either the TCP/IP stack 

of the host or guest VM’s operating system. The interception 

is performed before packets are pushed down to the TCP/IP 

stack for further processing (i.e., at the pre-routing hook). 

Here, Gurita utilizes a designated receiver to collect the 

information on number of open connections and bytes 

received by each flow locally and from its peers (receivers of 

the same job) to estimate  𝑓𝑚𝑎𝑥
𝐶  , 𝔽𝐶, and  𝑤𝐶. The details of 

designated receiver will be discussed later in this paper. Then, 

Gurita estimates 𝛽 without prior knowledge of job structure 

by leveraging the number of completed stage 𝒮̂. For instance, 

𝛽 ≈
1

𝑙𝑜𝑔(𝒮̂+1)
. The 𝛽  influence diminishes as  𝒮̂ →  ∞   to 



 

 

prevent false positive of nearing final stage caused by job with 

many stages. Information on 𝒮̂ can be obtained through the 

master controller (e.g. Map stage and Reduce stage), but there 

are cases when obtaining 𝒮̂ is not obvious [28]. One way to 

address this issue is by Gurita utilizing a controller to keep 

track of the job’s stage when coflow registers through an API 

[4, 5], or by utilizing machine learning [12]. 

Based on the above discussion, Ψ𝐽
𝐶  is estimated by  

Ψ𝐽
𝐶 ≈ 𝛽̈ × 𝑤̈𝐶 ×   𝑓̈𝑚𝑎𝑥

𝐶 × 𝔽̈𝐶                            (3) 

where 𝛽̈ , 𝑤̈𝐶 ,  𝑓̈𝑚𝑎𝑥
𝐶 , and 𝔽̈𝐶  are approximation of 𝛽 , 𝑤𝐶 , 

 𝑓𝑚𝑎𝑥
𝐶 , 𝔽𝐶 , and  𝑤𝐶  respectively. Coflows in stage 𝒮  is 

scheduled according to Ψ𝐽(𝒮), such that coflows with lower 

Ψ𝐽(𝒮) receive higher priority. 

To satisfy Gurita’s 4𝑡ℎ  rule without job structure 

information available ahead of time and without using a 

central controller, we first make the following observations. 

A critical path usually either has coflows with high CCT, a 

long chain of coflow dependencies, or a combination of the 

two. Moreover, prioritizing coflows on critical path with 

strong blocking effect may increase the JCT of other jobs. At 

the same time, prioritizing coflows on critical path with the 

least blocking effect may not be advantageous because 

Gurita’s 2𝑡ℎ  rule guarantees its prioritization. Interestingly, 

we observe from our experiments that prioritizing coflows on 

critical path with marginally larger blocking effect than 

coflows with the least effect may benefit from Gurita’s 4𝑡ℎ 

rule (§V). It can lower job JCT without significantly delaying 

other jobs. At last, we also notice that the number of coflows 

on critical path per job’s stage is bounded by the number of 

critical paths per job. Based on these observations, we extend 

eq.(3) as follows. 

Ψ𝐽
𝐶 ≈ 𝛽̈ × 𝑤̈𝐶 ×  𝑓̈

𝑚𝑎𝑥

𝐶
× 𝔽̈𝐶 − (𝛼 𝑓

𝑚𝑎𝑥
𝐶 × 𝑧𝒮), 

where 𝑧𝒮 ∈ {0,1}, such that 𝑧𝒮 = 1 if a coflow is possibly on 

a critical path, and 0 < 𝛼 ≤ 1 denotes a constant variable. 

Additionally, Gurita leverages  𝑓̈𝑚𝑎𝑥
𝐶  to estimate coflow on 

critical path because CCT is influenced by  𝑓𝑚𝑎𝑥
𝐶 . Since job 

structure information is unknown a priori,  𝑓𝑚𝑎𝑥
𝐶  behaves like 

a random variable. Then, Gurita utilizes Average Value 

Approximation technique (AVA) [38] to estimate whether a 

coflow is on a critical path. It is a technique that is often used 

in performance modeling to replace random variable by its 

means. Gurita computes the average of largest 𝑁 

observed 𝑓𝑚𝑎𝑥
𝐶  using AVA. In our experiment, we have 𝑁 <

5 , where 5 is the average number of stages in a job in 

production [28]. The AVA may not be as precise but suffices 

to lower the JCT.   

The scheduling scheme. Gurita schedules coflows according 

to their per stage blocking effect Ψ𝐽(𝒮) using Least- Blocking 

effect First (LBEF) (Algorithm 1). The general idea is that, 
given the stage of jobs, the scheme gives preference to 

coflows with the smallest per stage blocking effect Ψ𝐽(𝒮). In 

other words, coflows of job 𝐽(𝒮)  with lower Ψ𝐽(𝒮)  are 

assigned higher priority. This can be interpreted as follows. A 

coflow that blocks other coflows vertically or horizontally is 

given lower priority, but the priority depends on how many 

coflows are blocked. However, since a job may have different 

blocking effect at different stages, Gurita adjusts each 

coflow’s priority assignment whenever a coflow starts a new 

stage. Moreover, we also consider the scenario where 

different coflows may be in different stages. Thus, Ψ𝐽(𝒮) is 

updated when new coflows begin and complete, and the 

priority is also adjusted.  

Gurita assigns priority at (𝑖)  job level and (𝑖𝑖)  coflow 

level. At the job level, Gurita compares Ψ𝐽(𝒮) to a demotion 

threshold 𝒯: if  Ψ𝐽(𝒮) exceeds 𝒯, then the coflows in job 𝐽(𝒮) 

will be deprioritized, resulting in lower priorities for all its 

coflows. In our design, each threshold is associated with a 

priority level. Details of priority decision are discussed later 

in this paper. At the coflow level, every newly generated flow 

is also initially assigned to the highest priority by its receiver. 
This is because job information is not known a priori. A newly 

arrived coflow of job 𝐽(𝒮) is deprioritized according to the 

following conditions: First, when the coflow’s blocking effect 

Ψ𝐽
𝐶  exceeds the highest priority threshold of job blocking 

effect, then the flows of this coflow are assigned to the priority 

previously assigned to job 𝐽(𝒮). Secondly, when the job itself 

is deprioritized, then these flows are assigned to the job’s new 

priority. This strategy allows Gurita to increase the priority of 

a job while avoiding TCP out of order problem [24]. In other 

words, only newly generated flows are affected when a job is 

assigned to priority, while flows that are generated earlier 

continue to transmit at the previously assigned priority.  

Gurita employs a flow hash table (e.g. Jenkins hash  [29]) to 

keep track of flow information at the receiver’s end using 5 

tuples (i.e., src IP, dest IP, src port, dest port, and protocol) to 
identify different flows. Gurita then updates and stores flow 

information (i.e., coflow ID, flow ID, byte received counts, 

number of open connections, and etc.) into a flow table. 

Next, we describe how Gurita enforces LBEF without 

requiring hardware modification. The scheduling policy is 

then enforced in network by utilizing strict priority queuing 

(SPQ) [24], a built-in feature in existing commodity switches 

that utilizes multiple queues [1]. This enables packets 

belonging to higher priority coflows to be processed ahead of 

lower priority coflows. By exploiting SPQ to locally govern 

inter coflows traffic, Gurita achieves approximate global 

coordination. In other words, SPQ allows Gurita to function 

similar to traffic road management, where traffic lights locally 

govern road intersections, corresponding to commodity 

switches in our case. As long as all parties on the street abide 

by the traffic lights, which is the scheduling policy in this 

analogy, approximate global coordination occurs, resulting in 

smooth traffic. 

In practice, bottleneck may occur in datacenter network due 

to its bursty nature [17,23,40]. Leveraging SPQ to enforce the 

scheduling policy in the switches naturally allows Gurita to 

extend the description of machines in FFS-MJ (Definition 1) 

to also include switches. The egress ports of these switches 

function similarly to the machines in FFS-MJ such that jobs 

are processed in sequential order according to the order of 

switches in the path that connects senders and receivers, 

where data traverses from senders to receivers. This 

demonstrates that FFS-MJ is a proper problem to reduce to. 



 

 

Moreover, given SPQ is a built-in feature in existing 

commodity switches, this makes Gurita deployable friendly. 

 The next discussion describes the details of how Gurita 

leverages SPQ to coordinate coflows, as well as how to 

address the drawback of SPQ. 

Job and coflow prioritization. Consider 𝐾 priority queues in 

commodity switches [1] and job’s stage 𝐽(𝒮) , priority 𝑃𝐽
𝑘 

denotes  𝑘𝑡ℎ priority queue assigned to coflows in 𝐽(𝒮), such 

that 0 ≤ 𝑘 ≤ 𝐾. Then, the priority arrangement is defined as 

follows: 𝑃𝐽
0 > 𝑃𝐽

1 > ⋯ > 𝑃𝐽
𝑘 > ⋯ > 𝑃𝐽

𝐾 , where 𝑃𝐽
0  is the highest 

priority and 𝑃𝐽
𝐾 is the lowest priority. Every 𝑃𝐽

𝑘 is associated 

to threshold 𝒯𝑘 , where 𝒯0 < 𝒯1 < ⋯ < 𝒯𝑘 <. . < 𝒯𝐾 . Currently, 

existing commodity switches typically support 8 priority 

queues [1]. The priority decision is determined by comparing 

Ψ𝐽(𝒮)  to a set of thresholds. Initially, coflow 𝐶 ∈ 𝐽(𝒮)  is 

assigned to 𝑃𝐽
0, such that all flows in 𝐶 is also assigned to 𝑃𝐽

0.   

All coflows in 𝐽(𝒮) are demoted to lower priority when the 

estimated blocking effect Ψ𝐽(𝒮) exceeds threshold 𝒯𝑘, for 0 ≤

𝑘 ≤ 𝐾. In other words, in stage 𝒮, coflow 𝐶 ∈ 𝐽(𝒮) transmits 

data at priority 𝑃𝐽
𝑘  when 𝒯𝑘−1 < Ψ𝐽(𝒮) ≤ 𝒯𝑘  is satisfied. 

Otherwise, job 𝐽 is demoted to priority 𝑃𝐽
𝑘+1. When Ψ𝐽(𝒮) >

𝒯𝐾 , job 𝐽(𝒮) will be assigned to priority 𝑃𝐽
𝐾 . When stage 𝒮 

completes, Gurita adjusts the priority assignment of job 

𝐽(𝒮 + 1)  according to Ψ𝐽(𝒮 + 1).  These thresholds are 

determined using exponentially-spaced as recommended by 

[5]. As part of our future work, we will extend the study in 

[35] on using machine learning to determine thresholds.   

Priority decision. Job priority is determined by a head 

receiver (HR). HR is the first receiver of invoked in a coflow. 

Other receivers learn about HR (e.g. HR’s IP address) from 

the “master” (or “manager” or “coordinator”) [18,19, 20, 21] 

if these receivers are invoked by the master. If  new  receiver  

are  invoked  by existing receiver, then  parent  receivers  

inform their children about HR. The HR then determines job 

priority using eq. (3) and information collected from other 

receivers of the same job. Once HR communicates the priority 

decision to the receiver, the receiver informs its senders using  

reserved field in the TCP header of ACK packet about the 

decision. Then, the senders sets DSCP bits in the IP header of 

their outgoing packets accordingly. Here, Gurita uses DSCP 

to communicate priority decision and to schedule coflows.  

Next, receivers provide updates on locally-observed 

information (e.g. byte received at the receiver’s end, etc.)  to 

HR at regular interval of δ unit time. Information such as 

number of flows is determined by counting the number of 

open connections. Therefore, the HR utilizes information 

collected from its peers to determine job priority, and HR 

communicates the decision to other receivers through update 

messages. Upon receiving updates from HR, receivers 

compare the new priorities with the old ones. If new priorities 

are lower than the old ones, then receivers update their 

respective flows to transmit data according to the new 

priorities. Otherwise, flows continue the transmitting using 

the old priorities. 

Some coflows of a job are too small to wait for decisions 

from HR. Therefore, newly-arriving flows of coflow are 

automatically assigned the highest priority and are allowed to 

transmit data at that priority until a threshold is exceeded or 

an update is received from HR. Last, when a receiver 

completes its task (all senders close their connections to their 

receiver), the receiver informs their HR, and the HR excludes 

information of completed flows from being considered to 

determine job blocking effect, and HR updates Ψ𝐽(𝒮).  

Starvation Mitigation. As pointed in [14, 25], SPQ based 

schedulers often introduce starvation, where low priority 

traffic is denied resources. To alleviate the starvation 

problem, we emulate SPQ  by mimicking the behavior of SPQ 

using Weight Round Robin (WRR) [24]. This allows lower 

priority traffic to transmit data at much lower rate than higher 

priority traffic. Emulation is achieved by using per queue 

waiting time in SPQ scenario to determine the weight of each 

queue in WRR scenario, which is described as follows. Given 

a link of capacity 𝐵  (i.e. bandwidth), the traffic load in 

priority queue 0 at each link is 𝜌0 =
𝜆0

𝐵
 , where  𝜆0  denotes 

arrival rate at priority queue 0. Information on arrival rate is 

generally available and can be retrieved from switches [1].  

Then, the average waiting time 𝑊0 in priority queue 0 under 

SPQ is 𝑊0 =
𝐵

1−𝜌0
 [36] Given 𝑘 priority queues, the average 

wait time at the 𝑘𝑡ℎ priority queue is 

𝑊𝑘 =
𝐵

(1 − 𝜌0 − ⋯ − 𝜌𝑘−1)(1 − 𝜌0 − ⋯ − 𝜌𝑘)
 . 

Next, we utilize average waiting time 𝑊𝑘  to determine the 

weight of 𝑖𝑡ℎ queue in WRR scheme 𝜔𝑖 as follows.  

𝜔𝑖 =
𝑊𝑖

∑ 𝑊𝑗
𝑘
𝑗=0

 , 

 for 𝑖 = 0, 1, … , 𝑘 and ∑  𝜔𝑖
𝑘
𝑖=0 = 1. After that, the rate allocated 

to 𝑖𝑡ℎ queue in WRR scenario is determined by 𝜔𝑖 ∗  𝐵. This 

completes SPQ emulation using WRR, which allows Gurita 

to resolve starvation in SPQ. 

V. EVALUATION 

In this section, we evaluate the performance of Gurita 

through large scale simulation using data trace collected from 

Facebook datacenter. Our primary metrics for comparison is 

the average CCTs and performance improvement factor, 

which is described as follows.  

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  
𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐽𝐶𝑇𝑠

𝐺𝑢𝑟𝑖𝑡𝑎′𝑠 𝐽𝐶𝑇𝑠
 

If the improvement is greater (smaller) than one, Gurita is 

faster (slower). Additionally, performance is evaluated in 

seven different categories of job size as described in table 1. 

We compare Gurita to existing solutions that do not rely on a 

central controller, as well a solution that requires one. 

The main results are summarized below: 

1. Our experiments show that Gurita outperforms the baseline 

and decentralize solutions (Baraat [3] and Stream [4]) by up 

to 2× and 1.8× faster on average respectively. Relative to 

the centralized solution with global view, Aalo [5], Gurita 

is able to match the performance without complete 

information. 

2. In Bursty traffic scenario in large scale network, Gurita 

achieves a faster average JTT with small jobs (job in 

category 1 of table 1) by up to 2× and 1.7× compared to 



 

 

the baseline and decentralize solutions. Relative to Aalo, 

Gurita also achieves similar performance. 

3. In comparison to GuritaPlus, a scheduler with coflow 

information available ahead of time, Gurita achieves 

comparable performance. 

Trace Driven Simulations 

In this section, we analyze the performance of Gurita 

through simulation experiments.  

Simulation setting: We develop a flow-level simulator and it 

accounts for the flow arrival and departure events, rather than 

packet sending and receiving events. It updates the rate and 

the remaining volume of each flow when event occurs. Our 

simulations employ 8 pods FatTree network topology [26] 

(Figure 4.c) with 128 servers and 80 switches. Here, we utilize 

10 Gigabit (10G) switches in our evaluation.   

In our simulations, we compare Gurita’s performance to 

Per Flow Fair Sharing, Baraat [3], Stream [14], and Aalo [5]. 

Per-Flow-Fair-Sharing (PFS) mechanism is a scheduling 

scheme that divides the resource capacity equally among 

flows traversing the same link, which is also the baseline in 

our analysis. Baraat, a FIFO with limited multiplexing (FIFO-

LM) scheduler, is the current state of the art decentralized 

scheduler. Stream, another decentralized scheduling scheme, 

leverages coflow communication pattern to schedule coflows.  

 
Figure 5. Average performance in a scenario utilizing production trace with   

Facebook (FB-t) and Cloudera (CD-t) structure and in bursty scenario 

Facebook (FB-b) and Cloudera (CD-b).  

  

Figure 6. Average JCT in seven categories from replying production data 

trace with FB-Tao (Fig. 6.a) and TPC-DS (Fig. 6.b) structure. 
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Table 1. Seven categories of multi-stage job size. 

To analyze how Gurita performs against centralized 

solution, we compare our solution to Aalo. For simplicity, 

Aalo’s additional delay from managing centralized system is 

not considered in the simulator and information on job is 

made available instantaneously to the centralized controller. 

Additionally, we employ four priority queues in Aalo, Stream, 

and Gurita, sufficient to  provide  the  satisfactory  outcomes  

according to findings in [5, 14]. In principle, all schemes 

assume that job characteristics are unknown ahead of time. 

Moreover, in our simulation, the dependency between 

coflows in a job is detected when one of the sender sends 

requests to a  set of senders (or a sender) for data. 

Traffic pattern and load. To evaluate Gurita’s performance, 

we use production trace collected from 150-racks (3000 

machines) in Facebook datacenter. Then, we further evaluate 

Gurita in bursty scenario, which is when jobs arrive within 

small time intervals, a common occurrence in datacenter [17]. 

Facebook trace does not provide details at flows, coflows, or 

jobs level, including information on job structure. For 

example, the data trace does not specify the relationship 

between coflows. Therefore, we utilize industrial benchmark 

Cloudera Industrial benchmark, TPC-DS query-42 (TPC-DS) 

[4], and Facebook Tao structure (FB-Tao) [10] to generate 

DAG structure (Figure 4a and 4b). Each DAG structure is 

made up of coflows that are exact replications of jobs taken 

from the original trace. 

Our simulation also employs Equal-Cost multi-path 

routing (ECMP) [24], that is commonly used in datacenter to 

route packets and load balance network in datacenter, is also 

incorporated into our flow simulator.  Additionally, since TCP 

is the common transport protocol in datacenter, we implement 

rate limiter that behaves like TCP for all schemes, except for 

Baraat where the rate limiter is implemented according to its 

design in [3]. 

 

Figure 7.  Average JCT in seven categories with FB-Tao (Fig. 7.a) and TPC-

DS (Fig. 7.b) structure in bursty traffic scenario. 

 
Figure 8. Average JCT in seven categories against the ideal Gurita (Gurita+) 

with FB-Tao (Fig. 8.a) and TPC-DS (Fig. 8.b) structure. 

Simulation results. Here, we discuss Gurita’s average 

performance in trace driven and bursty scenarios (Figure 5). 

Our experiment demonstrates that Gurita outperforms PFS by 

up to 2× in both scenarios (TPC-DS and FB-Tao). This is 

because Gurita dedicates its resources to higher priority jobs 

allowing more coflows in the network, while PFS allocates its 

resources equally among flows of coflow from different jobs 

that traversing the same link.  

Gurita also outperforms Baraat by up to 1.8× faster in both 

scenarios. Baraat’s performance suffers  from  lower  priority 
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mice coflows queuing behind larger higher priority coflows in 

every job stage. Gurita is able to avoid this problem by 

allowing smaller coflows in a job stage to jump ahead of the 

queue, enabling job stages with fewer bytes to complete 

faster. In other words, Baraat punishes jobs for sending more 

bytes in some stages but fewer bytes in other stages by forcing 

them to share the resources with lower priority jobs. In 

contrast, Gurita is sensitive to the characteristic of multi-stage 

allowing larger jobs to accelerate their completion time when 

they have less bytes to send in some stages and at the same 

time to avoid being blocked by other jobs. Thus, Gurita allows 

larger jobs to complete faster.  

Compared to Stream, Gurita achieves better average JCT 

by up to 1.5× faster in both scenarios. This is because Gurita 

allows larger jobs to shorten their JCT by allowing them to 

send data at a higher priority when they transmit less data in 

a stage, at the same time making more resources available to 

process more jobs. In contrast, Stream requires larger jobs to 

transmit at lower priority regardless of the amount of byte sent 

per stage, at the same time blocking jobs from resources. 

Another advantage of Gurita over these decentralized 

schemes (Baraat, PFS, and Stream) is that, by prioritizing of 

Jobs with lower per stage blocking effect, it frees up more 

resources for other jobs. Thus, it achieves faster per stage 

completion time resulting in lower job completion time. 

Compared to centralized scheme Aalo with global view, 

Gurita achieves similar performance with less information by 

up to 1.05× faster in trace driven scenario but slightly slower 

in bursty scenario at just 0.01× slower. The key insight is jobs 

in Aalo may experience blocking, while Gurita leverage 

insight from the characteristic of multi-stage job to help jobs 

to avoid being blocked by other jobs with higher blocking 

effects. 

Trace driven scenario. Next, we delve deeper by 

analyzing Gurita in seven different job categories described in 

table 1 (Figure 6) using data trace from Facebook datacenter. 

Gurita outperforms PFS across all categories, particularly for 

jobs in categories I and II (smaller size jobs) by up to 8.5× 

better performance. Similarly, Gurita also outperforms Baraat 

across all categories by up 5 ×  faster. In comparison to 

Stream, Gurita achieves better performance in category 

acrosscategories in both scenarios, because measuring 

blocking effect per stage enables Gurita to quickly recognize 

jobs with fewer bytes per stage. Moreover, Gurita allocates 

more resources to allow larger jobs to transmit at a higher 

priority when they have less bytes in a stage, allowing them 

to complete faster while Stream punishes jobs for sending 

more bytes early. Therefore, by considering job blocking 

effect per stage, Gurita improves the average JCT and 

outperforms Stream in most categories by up to 4× faster. 

Compared to Aalo, Gurita matches outcomes across 

categories with TPC-DS. However, Gurita’s performance is 

comparable in category I with the FB-Tao structure at just 

0.1 ×  slower. In this instance, Aalo is slightly more 

advantageous over Gurita (by 0.1×  faster) because it is a 

centralized system with a global view, enabling it to be more 

precise in distinguishing small jobs. By recognizing the 

characteristic of multi-stage, Gurita matches the performance 

of the centralized solution without complete information.   

Bursty traffic scenario in large scale network. In this 

scenario (Figure 7), jobs arrive within 2 microseconds 

intervals [17, 32] in much larger (48 pods FatTree) network 

topology of which consisting of 27648 servers and 2880 

switches. Since the production trace used in the previous 

experiment is too small to generate network congestion, we 

generate 10000 jobs according workload provided in [4].   

Here, we demonstrate that Gurita is scalable and is also 

able to precisely differentiate job’s characteristics at different 

stages when jobs arrive within a small time interval. In Figure 

7, Gurita outperforms PFS across all categories by up to 2× 

faster across all categories in both scenarios (FB-Tao and 

TPC-DS). Compared to Baraat, Gurita achieves 1.8 × 

improvement with lower JCT across all categories. Gurita 

also largely outperforms Stream by up to 1.9×  faster JCT 

across all categories, except in category 1 in both scenario. 

This is because Stream utilizes strict priority queue to 

schedule coflow of different jobs, which allows Stream to 

quickly allocate the entire resources to small jobs (job in 

category 1 of table 1).  

On the other hand, Gurita allocates some portions of the 

resources to mitigate starvation that can occur to jobs with 

lower priority [14, 25]. Generally, Gurita matches the 

performance compared to Aalo across categories. In these 

experiments, we have demonstrated that considering job 

characteristics granularity at different stage allowing Gurita 

to outperform PFS, Baraat, and Stream. At the same time, 

Gurita matches the performance of the centralized scheme 

with global view, Aalo. 

Comparison to GuritaPlus. Here, we compare Gurita to an 

enhanced version, we call it GuritaPlus, where information on 

the total amount of bytes sent per stage is available and job 

priority can be adjusted spontaneously without concerning 

TCP out of order problem. GuritaPlus determines the 

blocking effect per stage by utilizing total in-flight bytes sent 

per stage. In-flight bytes are bytes that have been transmitted 

into the network but have not reached the destination. These 

assumptions allow GuritaPlus to be more precise in the 

scheduling decision.  

Additionally, the simulation is also conducted using trace 

from Facebook datacenter in 8 pods FatTree network.  Figure 

8 demonstrates that Gurita achieves similar outcome 

compared to GuritaPlus across categories. In the worst case, 

Gurita is only slightly behind GuritaPlus by at most within 

0.15% of GuritaPlus’ performance. These outcomes 

demonstrate that the utilization of observed information at the 

receiver’s end also provides sufficient approximation of a 

more ideal scenario that used the total amount of in-flight 

bytes per stage. 

RELATED WORK  

One of the early works on this theme is Orchestra [6], where 

the semantic among flows is accounted in the design of the 

flow transfers optimization. Varys [4] and Aalo [5] improve 

the performance in [6] by adopting Shortest Job First (SJF) in 

their scheduling mechanisms. RAPIER [7] and OMCoflow 

[13] incorporate routing algorithm into the scheduling 

scheme. The authors of [9,11] formulate the scheduling 

problem into weighted CCTs minimization problem. CODA 



 

 

[12] leverages machine learning techniques to infer and 

schedule coflows. Baraat [3], a heuristic that adopts FIFO 

with some level of multiplexing allows mice flows to be 

processed in the background in the presence of large coflows. 

Stream [13] and Creek [41] are coflow scheduling schemes 

that takes advantage of coflow communication patterns. 

Coflex [34] is a coflow scheduling that takes max-min 

fairness into consideration. MCS [38] schedules coflows 

according to number of flows and flow length of a coflow. 

Another study in MRTF [39] propose a coflow scheduling 

scheme that takes in-network congestion in the design 

consideration. All of these approaches use total accumulated 

bytes sent to schedule coflows, but overlooks that multi-stage 

coflows may different characteristics and transmit different 

amount of bytes at different stages. However, it assumes that 

job size and structure are known ahead of time, limiting use 

in practice.  

VI. CONCLUSION 

Gurita is a scheduling scheme for coflows of multi-stage 

job that leverages job and coflow characteristics at different 

stages to minimize average JCT without resorting to central 

controller. The outcomes from our experiments demonstrate 

that Gurita is an effective solution in improving network 

performance in datacenter. Gurita outperforms decentralized 

schemes such as PFS, Baraat and Stream, and matches the 

performance of the centralized scheme Aalo that has access to 

global view, despite Gurita not having complete information. 
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