

Near Optimal Multi-Faced Job Scheduler for

Datacenter Workloads *

1,2Hengky Susanto, 1,3Ahmed M. Abdelmoniem, 4Honggang Zhang, 5Benyuan Liu, and 6Don Towsley
1Dept. CSE, Hong Kong University of Science and Technology, HK. 2Huawei Future Network Theory Lab, HK.

3CS Dept., FCI, Assiut University, Egypt. 4Engineering Dept., University of Massachusetts Boston, US.
5CS Dept., University of Massachusetts Lowell, US. 6CS Dept., University of Massachusetts Amherst, US.

hsusanto@cs.uml.edu, amas@cse.ust.hk, honggang.zhang@umb.edu, bliu@cs.uml.edu, towsley@cs.umass.edu

Abstract—As data-parallel applications process more complex

data, the dependencies between computation jobs in a multi-

stage job also become more complicated. However, most of the

existing scheduling solutions primarily rely on total bytes sent

(job size) to differentiate jobs where jobs with fewer bytes sent

are prioritized over the larger ones. This approach overlooks the

fact that jobs may consist of multiple computation stages, and

that the completion of a computation job stage depends on the

completion of other jobs’ stage. In this paper, we present a

coflow scheduler of multi-stage jobs that minimizes the average

job completion time. Our solution prioritizes jobs based on the

multi-faceted characteristics of multi-stage job structure per

stage, instead of total bytes sent. Our experiments show that our

approach provides twice the performance of existing solutions

on average and by four times in bursty traffic scenario.

I. INTRODUCTION

Today, modern distributed parallel computing frameworks

(E.g. MapReduce[18], Dryad [21]) are commonly employed

in datacenters to process distributed computing jobs for data

analyzation or queries. These frameworks typically have

multiple successive computation stages. By multiple stages

we refer to a pipeline of successive computation phases where

a phase only begins processing when the previous

computation stage completes and the data flows generated by

the previous computation stage also complete. Each

computation stage usually consists of multiple tasks that are

processed in parallel.

Data transfers between two successive stages usually

involves a collection of flows with the same performance

objective, which is referred as coflow [4]. Coflow provides

context to this collection of flows, where data transfer

between two successive stages complete when all its flows

complete. Studies in [3-9, 34, 36, 37] show that faster data

transfers will lead to shorter completion time of a computation

stage. In other words, a task only complete faster when all its

flows complete faster, and therefore a job stage completion

time is shorter when all its tasks in its computation stage

complete faster. In this paper, our study focuses on

minimizing job computation time (JCT) to complete flows

between two successive computation stages.

* Published in IEEE ICDCS 2019

A study from a large production datacenter in Microsoft

[28] points out that job structures come in different shapes,

such as “W” shape, tree shape, chain shape, inverted “V”

shape and more complex shapes with multiple roots (outputs).

Moreover, this study also reports that a job can consist of

more than ten stages. The varied attributes of a job structure

can result in a job generating different amounts of bytes at

different stages. Currently, many of the existing scheduling

studies [3-9, 11-14, 34,36, 42-47] do not consider the shape

of the job structure and the effect of dependencies between

tasks within the same job.

Most current schemes minimize average job (or coflow)

completion time by implementing some version of a

scheduling scheme based on the total amount of bytes sent. In

other words, in these schemes a job is scheduled according to

its size, the total bytes sent. These total-bytes-sent (TBS)

based schemes compare the total accumulated bytes sent to a

set of thresholds to determine which job should be scheduled

first. For instance, in [11], a job with fewer bytes sent are

scheduled earlier than one having sent more.

However, we observe that scheduling a job simply based on

TBS without considering what stage it is in can punish jobs

that transmit more bytes in the early stages by scheduling

them later for the subsequent stages even when these jobs send

almost no data in subsequent stages. Moreover, TBS based

strategy also punishes jobs that transmit more bytes in some

stages but fewer bytes in other stages (on-and-off Job) [19].

Further, conventional TBS based approaches also do not

distinguish that a job with many stages but generate small

amount of bytes per stage from a job with few stages that

generate a large amount of bytes, especially if both jobs

generate similar amount of TBS. Therefore, schemes that do

not consider stages may result in longer completion time for

jobs that include small delay sensitive ones.

Additionally, in some special cases a new computation

stage can begin processing without having all tasks from the

previous stage complete. This is because some tasks may

complete faster than other tasks in the same stage. Thus, the

task in the next stage can begin processing as soon as its

dependent tasks complete (e.g. a job with multiple parallel

chain shape structure). This is also not captured in TBS based

schemes.

For these reasons, conventional TBS based schemes do not

account for the multi-faceted characteristics of multi-stage job

setting. In our study, we identify there are three dimensions to

coflow in this setting: the horizontal dimension (number of

flows per stage), the vertical dimension (in this paper the

maximum size of flows in each stage, while in [3-9] it refers

to the aggregated bytes), and the depth dimension (number of

computation stages). Previously discussed most TBS based

approaches are not sensitive to the nature of depth dimension

of multi-stage job structure.

In this paper, we present Gurita, a scheduling scheme to

coordinate coflows of a multi-stage job that incorporates the

multi-dimensional characteristics of multi-stage job,

achieving lower average JCT. To design our solution, we first

identify the nature of the multi-stage job scheduling problem.

Current solutions [3-9, 12-14] generally reduce the coflow

scheduling problem to concurrent open shop problems

(COSP). However, COSP does not accurately describe how

jobs are processed in the network (§ III.A). For this reason, we

model our job scheduling problem as a Flexible Flow Shop

Multi-Stage jobs Problem (FFS-MJ), which is rooted in the

widely studied Flexible Flow Shop Problem (FFS) [30, 32,

33]. The design of our job scheduler leverages wisdom and

insights from earlier studies of FFS.

One of the key insights to solving FFS is to obey the

classic Johnson’s rules [30], that is, system performance can

be improved by prioritizing coflows of jobs that are least

likely to delay the completion of other jobs. With this insight,

we define a set of rules (Gurita’s rules) to guide our job

scheduling design. First, we propose Least Blocking Effect

First (LBEF) based scheme for the coordination of coflows in

multi-stage jobs according to per stage blocking effect, that is,

a job’s likelihood to delay the completion of another job. In

addition, we also incorporate the concept of critical path to

further minimize job completion time. To achieve scalability,

the scheme is designed without resorting to a centralized

controller to avoid high overheads in managing a centralized

system. Further, the scheme does not require modification of

switch hardware, making the scheme easier to deploy.

 To minimize the average JCT, Gurita schedules coflows

according to a job’s least blocking effect per stage. In other

words, the scheduler prioritizes coflows in different job stage

that are least likely to delay the completion of other jobs in a

given stage. Initially, a job is assigned the highest priority.

The priority is then progressively adjusted in each stage

according to its impact on other jobs, We note that

information on job (e.g. task dependency structure within a

job, coflow size, when flows are generated, etc.) is unknown

a priori, which makes determining coflow stage difficult. To

address these challenges, Gurita estimates the job blocking

effect by utilizing available information. This includes

information received on total bytes sent per stage, number of

flows that are currently transmitting data, etc. By doing this,

Gurita not only helps small multi-stage jobs complete earlier,

it also improves the performance of on-and-off jobs and larger

jobs that transmit bytes early, resulting in smaller average

JCT. Another advantage is that priority can be adjusted

without introducing TCP out-of-order problem.

We implement Gurita in a simulator utilizing real data

traces of coflow traffic collected from 3000 machines (150-

racks) in Facebook datacenter [4] with two industrial

benchmarks: TPC-DS query [5] and Facebook Tao structure

[10]. Our result shows that Gurita outperforms a baseline and

existing solutions that utilize accumulated total bytes sent, up

to 2 × and 1.8 × faster JCT on average respectively (for

smaller jobs 8.5× compared to a baseline (Per Flow Fair

Sharing based approach) and 5 × faster relative to other

existing solutions). At the same time, Gurita achieves

performance comparable to that obtained from a centralized

solution. For further evaluation, we consider bursty traffic

Figure 1. a) An illustration of a three stages job . b) Paths that described the

dependency between coflows in a job, the order in which coflows must

complete, and CCT of each coflow .

scenario, where jobs arrive in short interval followed by large

interval with no arrival. Our experiment shows generally

Gurita improves JCT by up to 2× compared to the baseline,

while achieving 1.8 × improvement relative to existing

decentralized solutions. Moreover, Gurita’s performance

without global view matches the performance of an existing

centralized solution with global view.

Our contributions. We make the following contributions:

1. We identify the nature of multi-stage job scheduling

problem and model the problem as FFS-MJ. We prove this

problem to be an NP-Hard problem. We also identify there

are multi dimensions to multi-stage job: horizontal, vertical,

and depth. This provides an insight into the nature of multi-

stage job.

2. We then define Gurita’s rules to guide our design and

propose multi-stage job scheduling schemes (under both

ideal conditions and in practice) without resorting to a

centralized controller. Our design also takes advantage of

the concept of critical path in a job, which describes a

sequence of a job’s completion time for every stage,

summing up the JCT.

3. We demonstrate the benefits from considering the

granularity of job characteristics at different stages in our

scheduling through simulation.

4. We address practical challenges using Gurita (e.g.

starvation problem) encountered while designing our

scheduler.

II. BACKGROUND, MODEL, AND MOTIVATION

Coflow communication pattern. A coflow is a collection of

flows between two groups of machines [15]. In other words,

a) b)

it is also a group of flows between two set of tasks in two

successive computation stages during shuffle phase. Shuffle

transfers the output from the previous stage to the next one.

The machines that send the outputs are called senders and the

machines receiving the data are called receivers. In a coflow,

each receiver communicates with one or multiple senders to

complete a single coflow [14]. In multi-stage scenario, a

sender may function as a receiver when the sender invokes

new (children) senders, such that the parent can only be

processed after all of its children complete.

DAG structure. Dependencies between coflow in a multi-

stage job can be modelled as a Directed Acyclic Graph (DAG)

[5,27]. A parent coflow only completes when all coflows it

depends on complete. The relationship between coflows of

the same job can be described as follows. Represent each job

as DAG 𝐺 = (𝐸, 𝑉) , where a vertex in 𝑉 is a coflow and

edge (𝑢, 𝑣) ∈ 𝐸 represents a dependency between two

coflows 𝑢 and 𝑣 in 𝑉, where 𝑢‘s completion depends upon

𝑣’s completion (Figure 1.a).

Computation stages. A stage is a computation step in 𝐺, such

that 𝑖𝑡ℎ stage is the 𝑖𝑡ℎ computation step and 𝑖𝑡ℎ stage must

be completed before (𝑖 + 1)𝑡ℎ stage can be processed. Further,

a job may have one or more coflows in a stage [5].

Jobs in production. As observed in Microsoft datacenter

[28], a job is typically made up of multiple tasks, and job

dependency structure may come in different shapes, such as

“W” shape, tree shape, chain shape, inverted “V” shape or

more complex shapes with multiple outputs (roots).

Approximately 40% of jobs exhibit a tree structure.

Additionally, a job may have multiple parallel chains of

dependencies and the average depth of a job is five stages and

may go to more than ten stages. This observation offers an

explanation in [10, 15, 19] as to why a job may generate

different amount of bytes at different stage.

Settings. To analyze the job characteristic, we abstract the

datacenter network as a non-blocking datacenter fabric

connecting two sets of 𝑀 machines [4, 5], where the ingress

machines (senders) generate data flow and egress machines

(receivers) are the destination. This abstraction allows a

simpler conception for analysis. However, we do not impose

this concept in our design and evaluation. In our design and

evaluation, we consider the more realistic scenario where the

network in datacenter can be bursty and jobs compete for

network resources (e.g. switch) [17, 23].

Motivation example (Figure 2). Consider job A transmitting

10, 1, 1, and 1 units size of data at stage 𝒮, 𝒮 + 1, 𝒮 + 2 and

𝒮 + 3 respectively. We have single stage job B, C, and D each

transmitting 2 units size data. The processing rate is 1 unit size

per unit time. In the first scenario, these jobs are scheduled

using TBS based scheme which prioritizes jobs with less TBS.

We have job A complete after 𝒮 + 3 with JCT = 19 units

time. Job B, C, and D each has JCT = 2 units time. The

average JCT is
19+2+2+2

4
= 6.25 units time. In the second

scenario, the scheduler prioritizes jobs according to how

much data is transmitted per stage instead of TBS. Job A

completes with JCT = 13 units time and Job B, C, and D each

has JCT = 3 units time. The average JCT in the second

scenario is
13+3+3+3

4
= 5.5 unit time, which is lesser than the

JCT in the first scenario.

III. MULTI-STAGE COFLOW

Gurita coordinates jobs according to how a job may impact

(or delay) the completion of other coflows. Like prior works

[3-13], Gurita assumes that coflow IDs can be obtained from

upper layer applications. However, CODA [12] shows that it

is possible to infer flows of a coflow using machine learning.

Gurita’s scheduler resides in one of the many receivers of a

coflow and coordinates all the receivers in order to manage

the flows in each receiver. Finally, scheduling decisions are

enforced in the network by employing a built-in function

commonly available in today’s commodity switches, namely

strict priority queuing (SPQ), which means Gurita is

deployable friendly.

Figure 2. Illustration on the disadvantages of stage agnostic scheme on JCT.

Scenario 1 demonstrates the results of solution based on Shortest Job First.

Scenario 2 demonstrates the results of scheduling solution that takes into

account the multi-stage attribute of jobs.

Figure 3. The illustration of modeling topology of datacenter network in

Flexible Flow Shop Problem. Machine 𝑚𝑖,𝑗 is the 𝑗𝑡ℎ machine in layer 𝑖.

A. Problem Formulation

Consider the following multi-stage job scheduling

problem with 𝑛 jobs in a system indexed by 1, 2, …,𝑛. Let 𝑇𝐽

denotes the JCT of job 𝐽 ; the problem is formulated as

follows.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑇𝐽

𝑛

𝑗=1
 (1)

𝑠. 𝑡. 𝐶(𝒮) ≻ 𝐶(𝒮 + 1) , for 𝒮 > 0, (1. 𝑎)

where 𝐶(𝒮) denotes coflow 𝐶 in computation stage 𝒮 of job

𝐽 . Constraint (1.a) describes the dependency between two

coflows in 𝐽 such that the completion of 𝐶(𝒮 + 1) depends on

the completion of 𝐶(𝒮). This ensures that the parent coflow is

processed only after its child flows are complete.

 Unlike a single-stage job scenario, where JCT is

determined by its coflow with the slowest flow completion

time, JCT of a multi-stage job is influenced by the number of

stages in a job and JCTs in each stage. Let Φ𝑆𝐸𝑇(𝐽) denote a

set of paths in job 𝐽, where each path Φ𝑖 ∈ Φ𝑆𝐸𝑇 (𝐽) describes

the order of tasks in which they must be completed from leaf

nodes (tasks in stage 1) to root nodes (tasks in final stage) in

a job, as illustrated in Figure 1. Let 𝐶𝑇(Φ𝑖) denote the total

time required to deliver data between tasks in path Φ𝑖 . Thus,

minimizing JCT is equivalent to

𝐽𝐶𝑇 = 𝑚𝑖𝑛 𝑚𝑎𝑥(𝐶𝑇(Φ𝑖), ∀Φ𝑖 ∈ Φ𝑆𝐸𝑇(𝐶)).

In other words, the concept of critical path is an expression

that consists of a sequence of coflow completion time (CCT)

that covers the JCT. It also offers a way to relate CCT at

different stages from JCT perspective. Therefore, when the

CCT of a coflow on critical path is increased, the job

completion time is also increased. Based on this observation,

coflows on critical paths of different jobs should not be

scheduled together. This insight is incorporated in our design

to solve problem (1).

 To design an appropriate scheduling scheme, we need to

understand the nature of the problem of scheduling jobs.

Initial studies on coflow scheduling [4, 9] reduce the coflow

scheduling problem to an NP-Hard problem - concurrent

open shop problem (COSP) [2] - consisting of 𝑛 jobs and 𝓂

layers of machines, where jobs correspond to coflows and

machines can be interpreted as egress ports of datacenter

fabric (or switches). The objective is to minimize the total job

completion time. Since solving COSP is very difficult [2, 7],

the current practice [4, 5, 9,12, 34] simplifies COSP to 2

layers (𝑚 × 2 datacenter fabrics). In the simplification, a

datacenter fabric is assumed to be a non-blocking big switch,

where each machine in COSP represents NIC cards at the end-

host (sender and receiver ends). Thus, this setup allows

coflow scheduler to be concerned only with scheduling a set

of flows of a coflow at the senders’ end such that the waiting

time for resources at the receivers’ end is minimized.

However, delving deeper into the nature of COSP, we

realize that it is not concerned with the order in which jobs are

processed first [2]. For example, a flow can be first processed

at a receiver, and then at the sender, which is not the order in

which a flow is processed in the network. The processing

order in the network should be: the flow is processed at the

sender before it is processed at the receiver. In other words,

COSP allows flow operation to be processed at a random

order. This is because COSP is formulated for scheduling

problem in manufacturing where products are processed in

multiple assembly lines and can be moved between assembly

lines. For this reason, although there have been numerous of

attempts to solve COSP [31, 32], the insights gained from

these endeavors do not apply to job scheduling.

 Therefore, in order to design an effective multi-stage job

scheduling scheme, we first must understand the nature of the

job scheduling problem and identify what existing problem

the multi-stage job scheduling problem should be reduced to.

We identify a class of Flexible Flow Shop Problem (FFS) [30,

32, 33] that not only captures the characteristics of scheduling

jobs, but also reflects network processing order, i.e. each

operation (how coflow is processed) must be performed in a

sequential order according to the order of the sender and then

the receiver. The objective is to minimize the average JCT,

while considering the constraints of the order of when coflows

can be processed at different machines. Since flow shop

scheduling has been widely studied in operation research,

reducing job scheduling problem to this problem allows us to

naturally exploit the wealth of insights and lessons learned

from existing solutions.

B. Flexible Flow Shop Problem for Multi-Stage Jobs

FFS only considers the scenario of a single stage job.

Thus, we extend the FFS problem to Flexible Flow Shop

Problem with Multi-stage Jobs Problem (FFS-MJ). In this

section, we first formally define FFS-MJ. Then, we convert

intra multi-stage job scheduling to FFS-MJ.

Definition 1: Flexible Flow Shop Problem with Multi-stage

Jobs Problem (FFS-MJ). Consider a set of 𝑛 independent jobs

𝐽1, 𝐽2, … , 𝐽𝑛 , where each Job 𝐽𝑖 consists of a set of coflows.

These jobs have to be scheduled through multiple layers of

processing, where each layer is made up of parallel machines

(Figure 3).

We first define the relationship between two coflows. Let

𝐶(𝒮) denote coflow 𝐶 ∈ 𝐽𝑖 in computation stage 𝒮. If coflow

𝐶(𝒮 + 1) is the parent of 𝐶(𝒮) , then, there is a precedence

constraint requiring the completion time of 𝐶(𝒮) before its

parent coflow 𝐶(𝒮 + 1). In other words, there is a dependency

between coflows in 𝐽𝑖 that forms DAG such that a parent task

can only be processed after all its children complete. The

relationship between parent and child can be interpreted as

that of coflows each belonging to different sequential

computation stages.

Next, we define how a coflow is processed. Every coflow

𝐶(𝒮) ∈ 𝐽𝑖 is processed in a set of parallel operations 𝑂(𝐶(𝒮)).

Namely, 𝑂(𝐶(𝒮)) can be interpreted as a set of operations

processing a set of flows of a coflow 𝐶 at stage 𝒮 . Thus,

𝑂(𝐶(𝒮 + 1)) cannot be processed until operations in 𝑂(𝐶(𝒮))

complete.

Here, we define how a machine processes an operation in

𝑂(𝐶(𝒮)). Each machine, which can be interpreted as a port in

the big switch, can only process at most one operation at a

time, such that the (𝐶(𝒮)) operation must be processed at one

of the machines in layer 𝒮.

Finally, the objective is to arrange the job sequence such

that the aggregated job completion time is minimized. ∎

NP-Hard problem. We show the hardness of the FFS-MJ.

Theorem 1. FFS-MJ is NP-Hard.

Proof. Let 𝛨(𝒮1, 𝒮2, … , 𝒮𝑚) be FFS-MJ problem and problem

𝛨 has 𝑚 stages to complete, such that stage 𝒮𝑖 must be

completed before 𝒮𝑖+1 can be processed, for 1 ≤ 𝑖 < 𝑚. We

partition problem 𝛨 into smaller problems 𝛨(𝒮1), 𝛨(𝒮2), …,

and 𝛨(𝒮𝑚), where these problems are solved individually.

However, they must be processed one after another in the

sequence according to the order of its stage, such that

𝛨(𝒮𝑖+1) is solved only after 𝛨(𝒮𝑖) completes, for 𝑖 =
1, 2, … , 𝑚 − 1. Since solving each 𝛨(𝒮𝑖) is NP-Hard [2, 31,

32], 𝛨(𝒮1, 𝒮2, … , 𝒮𝑚) is also NP-Hard. ∎

Theorem 1 implies that solving multi-stage job scheduling

problem is equivalent to solving FFS-MJ, which is also an

NP-hard problem.

Reducing multi-stage job problem to FFS-MJ. In

Definition 1, we have described how multi-stage job is

mapped to FFS-MJ. To reduce datacenter network to multiple

layers of parallel machines in FFS-MJ, conceptually machines

in 𝑚𝑡ℎ and 𝑚-1𝑡ℎ layer in FFS-MJ can be viewed as receivers

and senders respectively in the big switch abstraction, for 1 <
𝑚 < 𝑀. M denotes total number of machines.

Identifying the nature of multi-stage job scheduling

problem provides us with a direction and intuition to solve the

problem. However, intuition alone is not sufficient. In order

to properly design a scheduler, we must also understand the

job and coflow characteristics in multi-stage jobs setting.

C. Characteristics in Multi-Stage Job

In this section, we investigate job characteristics in a

multi-stage setting by analyzing data collected from a

production datacenter in Facebook [4, 5] and make the

following observations.

(𝑖) Flows at the leaf node position of any job structures are

the first flows to be processed.

(𝑖𝑖) A receiver may have a large number of parallel senders

transmitting data from different ports simultaneously. This

means the aggregate traffic from this group of flows may

quickly create bottleneck and increase completion times of

other jobs.

(𝑖𝑖𝑖) The time to complete a single stage is determined by the

amount of bytes sent is processed and the processing speed in

each stage. Thus, the larger numbers of bytes sent per stage or

the lower processing speed can lead to longer completion

times. Based on these observations, a coflow in this setting

has these following dimensions: horizontal (the width of

coflow per stage), vertical (the largest flow size in a coflow

per stage), and depth (the number of stages that needs to be

completed). This revelation provides us with an important

insight for designing our scheduling scheme.

IV. GURITA’S RULES AND SCHEDULING SCHEME

In this section, we present our Gurita multi-stage job

scheduling scheduler. We begin with rules that provide the

foundations of our solution. We then design our scheduler

using these rules and observations made in the previous

section.
A. Gurita’s Rules

Since FFS has been widely studied and FFS-MJ is rooted

in FFS, reducing multi-stage job scheduling to FFS-MJ allows

us to design a scheduler that leverages insights observed from

existing studies on FFS [30, 31, 32]. Most solutions for FFS

obey the classic Johnson rules [30], which are: (𝑖) minimize

resource idle time, (𝑖𝑖) make the machine available quickly to

reduce waiting time for resources is minimized, (𝑖𝑖𝑖) avoid

blocking other jobs, and (𝑖𝑣) avoid tardiness. Here, tardiness

of a job is comparable to the amount of time that elapses

between when a job is supposed to complete (e.g., due date)

and when it actually completes.

To illustrate the impact of the blocking concept proposed

by Johnson (Figure 4), consider a single stage job A, B, C, and

D each transmitting data 6 units size. Job A has three coflows

each consist of 2 units size, while job B, C, and D have two

coflows each of 3 units size. Thus, all jobs have the same total

size. The processing rate is 1 unit size per unit time. In the

first scenario, job A has three coflows blocking coflows from

job B, C, and D. Job A has JCT = 2 units time, while job B,

C, and D have JCT = 5 unit times. The average JCT is 4.25

units time. On the other hand, in the second scenario, if Job

B, C, and D are prioritized over job A, then we have job B, C,

and D each incurs JCT = 3 units time and job A incurs JCT =

5 unit times. The average JCT = 3.50 units time, which is

lower than the JCT in the first scenario.

Next, we describe how insights observed from Johnson’s

rules and our interpretations for Gurita.

(𝑖) Since a multi-stage job is processed through multiple

layers of machines (e.g. server nodes), a longer processing

time in a layer can lead to longer idle times of machines in the

next layer. Based on Johnson’s first rule, the key to reducing

machine idle time is to quickly complete the job’s stage in

predecessor machines. The time to process at each layer can

be sped up by prioritizing a job’s stage that consist of small

number of small size flows because they can be processed

quickly.

(𝑖𝑖) Further, consistent with Johnson’s second rule,

prioritizing a stage consisting a small number of small size

flows means machines can be made available quickly.

Figure 4. Example of blocking Impact.

(𝑖𝑖𝑖) We observe that a job’s stage may block other job(s)

vertically or horizontally. Vertical blocking is caused by a set

of elephant flows in a job stage causing another job stage to

wait longer for elephant flows to complete. Horizontal

blocking is caused by a job stage consisting of a large number

of concurrent flows that require more resources, resulting in

the blocking of another job stage. Finally, the worst case

scenario is a combination of horizontal and vertical blocking.

Thus, in accordance to Johnson’s third rule, a job’s stage that

block a other job stage (either horizontal, vertical, or both)

should be assigned lower priority.

 (𝑖𝑣) Last, as pointed in Johnson’s final rule, tardiness can be

avoided by prioritizing a job stage with the smallest slack

(e.g., slack = time remaining before due date - remaining

processing time). This means a job that has reached the final

stage of its completion should be quickly completed to further

minimize a job completion time and to avoid causing delays

to other jobs.

Based on these applications of Johnson’s rules, we

propose Gurita’s rules.

Rule 1. To avoid machine waiting for jobs and jobs waiting

for a resource’s availability, the scheduler should prioritize

job stages that consists of smaller numbers of shorter flows.

Rule 2. To avoid horizontal blocking, the scheduler prioritizes

job’s stage that consist of smaller number of flows. To avoid

vertical blocking, scheduler prioritizes job stage that consist

of short flows.

Rule 3. Jobs in the final stage should be prioritized over those

that are not in final stage.

Rule 4. Based on our observations discussed earlier, blocking

coflows on a critical path increases job completion time.

Therefore, coflows on critical path should be prioritized over

those that not on critical path.

B. Coflow Scheduler

Here, we design our scheduler by considering two

scenarios: ideal condition and in practice. In the ideal

condition scenario, the scheduler is assumed to operate with

all information on coflow and job structure available ahead of

time (e.g. flow size, coflow arrival time, number of flows,

number of stage, etc.). This assumption allows us to

holistically apply the Gurita rules and insights to the initial

design. Following this, we adjust the design taking into

account more realistic conditions in practice, where some

information is not available ahead of time.

We begin by presenting the formulation of the coflow

blocking effect Ψ𝐽
𝐶 of coflow 𝐶 in job 𝐽 , and then we

formulate job blocking effects Ψ𝐽(𝒮) at stage 𝒮 with Ψ𝐽
𝐶 .

First, Ψ𝐽
𝐶 is formulated as follows.

Ψ𝐽
𝐶 = 𝛽 × 𝑤𝐶 × 𝑓𝑚𝑎𝑥

𝐶 × 𝔽𝐶 , (2)

Here, 𝛽 denotes a weight factor for a coflow that reaches final

stage (Gurita’s 3𝑟𝑑 rule), where 𝛽 = 1 −
𝒮̂

𝑡𝑜𝑡𝑎𝑙_𝒮
 and 𝒮̂ denote

the number of completed stages and 𝑡𝑜𝑡𝑎𝑙_𝒮 describes the

total number of stages required to complete a job. 𝛽 decreases

as the job’s stage approaches the final stage. Moreover, the

two dimensions of coflow, 𝑓𝑚𝑎𝑥
𝐶 and 𝔽𝐶 denote the size of the

largest flow and the total number of flows in coflow 𝐶

respectively. We have 𝑓𝑚𝑎𝑥
𝐶 × 𝔽𝐶 to model the horizontal and

vertical blocking effect per stage (Gurita’s 2𝑡ℎ rule). The area

under 𝑓𝑚𝑎𝑥
𝐶 × 𝔽𝐶 approximates the severity of blocking effect

with both dimensions combined. Additionally, since the

blocking time duration is affected by flow size (Gurita’s 1𝑡ℎ

rule), Ψ𝐽
𝐶 is adjusted with 𝑤𝐶 , which is expressed as follows.

𝑤𝐶 = {
1 − 𝛾, 𝛾 < 1

0.1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,

for 𝛾 = 𝛿
𝔽̅𝐶

 𝑓𝑚𝑎𝑥
𝐶 , where 1 > 𝛿 > 0 is constant and 𝔽̅𝐶 denotes the

average flow size in a coflow. Here, 𝑓𝑚𝑎𝑥
𝐶 can be interpreted

as the worst case scenario and 𝑤𝐶 normalizes the blocking

effect of 𝑓𝑚𝑎𝑥
𝐶 relative to other flows in 𝐶. Thus, if 𝑓𝑚𝑎𝑥

𝐶 is

large and 𝛾 → 1, 𝑤𝐶 means a coflow may further delay the

completion of other coflows from different jobs.

Next, per stage job blocking effect Ψ𝐽(𝒮) with Ψ𝐽
𝐶 can be

formulated as follows. First, we consider the case when there

is only a coflow in stage 𝒮, we have Ψ𝐽(𝒮) = Ψ𝐽
𝐶 for 𝐶 ∈ 𝐽(𝒮).

Otherwise,

Ψ𝐽(𝒮) = 𝑚𝑎𝑥(Ψ𝐽
𝐶) , ∀𝐶 ∈ 𝐽(𝒮),

for |𝐶| > 1. Then, at the abstract level, Ψ𝐽(𝒮) is utilized to

coordinate coflows such that coflows with smallest value of

Ψ𝐽(𝒮) are scheduled ahead of coflow with a higher blocking

effect.

To satisfy Gurita’s 4𝑡ℎ rule, we first approximate the

𝐶𝐶𝑇 ≈
 𝑓𝑚𝑎𝑥

𝐶

𝐵
 of each coflow and then we assign it to each vertex

in DAG 𝐺 discussed above respectively. Here, 𝐵 denotes the

processing rate. Then, the critical path in a job can be

determined using Breath First Search [24].

However, in practice, information on job such as flow size,

coflow size, and job structure is usually unknown a priori,

which makes determining Ψ𝐽
𝐶 and satisfying Gurita’s 4𝑡ℎ rule

difficult. To address this problem, we demonstrate in the

following section how we adjust the initial design of per stage

blocking effect based on available information on job without

resorting to a centralized controller.

From concept to practice. The unavailability of information

makes scheduling coflows of different jobs challenging.

Another challenge is enforcing the scheduling scheme

without requiring the scheme to resort to a centralized

controller and modifications to existing hardware (e.g.,

switches). First, we describe how to estimate Ψ(𝐶𝒮) when

information on job is unknown a priori. Gurita addresses this

problem by estimating Ψ𝐽
𝐶 with information that becomes

available at the receiver end, such as number of open

connections between senders, amount of bytes received by

each flow, and the aggregated number of bytes received of a

coflow. Here, this information can be transparent at the

Algorithm 1: Least-Blocking Effect First (LBEF)

1. 𝐽 ̅ // set of multi-stage Jobs

2. Procedure Gurita_scheduler (𝐽 ̅)

3. 𝐽 // empty array to keep track Jobs

4. for each coflow 𝐶 ∈ 𝐽 ∈ 𝐽 ̅do

5. 𝐶(𝒮) = stage(𝐽) // The stage of cofow 𝐶

6. Ψ𝐽
𝐶 = compute_blocking_effect (𝐶(𝒮))

7. Compute Ψ𝐽(𝒮)

8. 𝐽 ← Ψ𝐽(𝒮) // insert Ψ𝐽(𝒮) to 𝐽

9. end for

10. Sort(𝐽) ⊳ Sort in descending order according to Ψ𝐽(𝒮)

11. for each 𝐶(𝒮) ∈ 𝐽 do

12. Process ∀𝑓 ∈ 𝐶(𝒮) // Process all flow in 𝐶(𝒮)

13. end for

14. end procedure

15. Procedure compute_blocking_effect (𝐶(𝒮))

16. Utilizing eq. (3) to compute and return Ψ𝐽
𝐶

17. end procedure

shim-layer between TCP/IP stack (or VMs) and the link-layer

(or Hypervisor) by leveraging the NetFilter framework [22],

which is an integral part of Linux OS. Netfilter hooks are

attached to the data path in the Linux kernel just above the

physical interface, allowing Gurita to intercept outgoing and

incoming packets without modifying either the TCP/IP stack

of the host or guest VM’s operating system. The interception

is performed before packets are pushed down to the TCP/IP

stack for further processing (i.e., at the pre-routing hook).

Here, Gurita utilizes a designated receiver to collect the

information on number of open connections and bytes

received by each flow locally and from its peers (receivers of

the same job) to estimate 𝑓𝑚𝑎𝑥
𝐶 , 𝔽𝐶, and 𝑤𝐶. The details of

designated receiver will be discussed later in this paper. Then,

Gurita estimates 𝛽 without prior knowledge of job structure

by leveraging the number of completed stage 𝒮̂. For instance,

𝛽 ≈
1

𝑙𝑜𝑔(𝒮̂+1)
. The 𝛽 influence diminishes as 𝒮̂ → ∞ to

prevent false positive of nearing final stage caused by job with

many stages. Information on 𝒮̂ can be obtained through the

master controller (e.g. Map stage and Reduce stage), but there

are cases when obtaining 𝒮̂ is not obvious [28]. One way to

address this issue is by Gurita utilizing a controller to keep

track of the job’s stage when coflow registers through an API

[4, 5], or by utilizing machine learning [12].

Based on the above discussion, Ψ𝐽
𝐶 is estimated by

Ψ𝐽
𝐶 ≈ 𝛽̈ × 𝑤̈𝐶 × 𝑓̈𝑚𝑎𝑥

𝐶 × 𝔽̈𝐶 (3)

where 𝛽̈ , 𝑤̈𝐶 , 𝑓̈𝑚𝑎𝑥
𝐶 , and 𝔽̈𝐶 are approximation of 𝛽 , 𝑤𝐶 ,

 𝑓𝑚𝑎𝑥
𝐶 , 𝔽𝐶 , and 𝑤𝐶 respectively. Coflows in stage 𝒮 is

scheduled according to Ψ𝐽(𝒮), such that coflows with lower

Ψ𝐽(𝒮) receive higher priority.

To satisfy Gurita’s 4𝑡ℎ rule without job structure

information available ahead of time and without using a

central controller, we first make the following observations.

A critical path usually either has coflows with high CCT, a

long chain of coflow dependencies, or a combination of the

two. Moreover, prioritizing coflows on critical path with

strong blocking effect may increase the JCT of other jobs. At

the same time, prioritizing coflows on critical path with the

least blocking effect may not be advantageous because

Gurita’s 2𝑡ℎ rule guarantees its prioritization. Interestingly,

we observe from our experiments that prioritizing coflows on

critical path with marginally larger blocking effect than

coflows with the least effect may benefit from Gurita’s 4𝑡ℎ

rule (§V). It can lower job JCT without significantly delaying

other jobs. At last, we also notice that the number of coflows

on critical path per job’s stage is bounded by the number of

critical paths per job. Based on these observations, we extend

eq.(3) as follows.

Ψ𝐽
𝐶 ≈ 𝛽̈ × 𝑤̈𝐶 × 𝑓̈

𝑚𝑎𝑥

𝐶
× 𝔽̈𝐶 − (𝛼 𝑓

𝑚𝑎𝑥
𝐶 × 𝑧𝒮),

where 𝑧𝒮 ∈ {0,1}, such that 𝑧𝒮 = 1 if a coflow is possibly on

a critical path, and 0 < 𝛼 ≤ 1 denotes a constant variable.

Additionally, Gurita leverages 𝑓̈𝑚𝑎𝑥
𝐶 to estimate coflow on

critical path because CCT is influenced by 𝑓𝑚𝑎𝑥
𝐶 . Since job

structure information is unknown a priori, 𝑓𝑚𝑎𝑥
𝐶 behaves like

a random variable. Then, Gurita utilizes Average Value

Approximation technique (AVA) [38] to estimate whether a

coflow is on a critical path. It is a technique that is often used

in performance modeling to replace random variable by its

means. Gurita computes the average of largest 𝑁

observed 𝑓𝑚𝑎𝑥
𝐶 using AVA. In our experiment, we have 𝑁 <

5 , where 5 is the average number of stages in a job in

production [28]. The AVA may not be as precise but suffices

to lower the JCT.

The scheduling scheme. Gurita schedules coflows according

to their per stage blocking effect Ψ𝐽(𝒮) using Least- Blocking

effect First (LBEF) (Algorithm 1). The general idea is that,
given the stage of jobs, the scheme gives preference to

coflows with the smallest per stage blocking effect Ψ𝐽(𝒮). In

other words, coflows of job 𝐽(𝒮) with lower Ψ𝐽(𝒮) are

assigned higher priority. This can be interpreted as follows. A

coflow that blocks other coflows vertically or horizontally is

given lower priority, but the priority depends on how many

coflows are blocked. However, since a job may have different

blocking effect at different stages, Gurita adjusts each

coflow’s priority assignment whenever a coflow starts a new

stage. Moreover, we also consider the scenario where

different coflows may be in different stages. Thus, Ψ𝐽(𝒮) is

updated when new coflows begin and complete, and the

priority is also adjusted.

Gurita assigns priority at (𝑖) job level and (𝑖𝑖) coflow

level. At the job level, Gurita compares Ψ𝐽(𝒮) to a demotion

threshold 𝒯: if Ψ𝐽(𝒮) exceeds 𝒯, then the coflows in job 𝐽(𝒮)

will be deprioritized, resulting in lower priorities for all its

coflows. In our design, each threshold is associated with a

priority level. Details of priority decision are discussed later

in this paper. At the coflow level, every newly generated flow

is also initially assigned to the highest priority by its receiver.
This is because job information is not known a priori. A newly

arrived coflow of job 𝐽(𝒮) is deprioritized according to the

following conditions: First, when the coflow’s blocking effect

Ψ𝐽
𝐶 exceeds the highest priority threshold of job blocking

effect, then the flows of this coflow are assigned to the priority

previously assigned to job 𝐽(𝒮). Secondly, when the job itself

is deprioritized, then these flows are assigned to the job’s new

priority. This strategy allows Gurita to increase the priority of

a job while avoiding TCP out of order problem [24]. In other

words, only newly generated flows are affected when a job is

assigned to priority, while flows that are generated earlier

continue to transmit at the previously assigned priority.

Gurita employs a flow hash table (e.g. Jenkins hash [29]) to

keep track of flow information at the receiver’s end using 5

tuples (i.e., src IP, dest IP, src port, dest port, and protocol) to
identify different flows. Gurita then updates and stores flow

information (i.e., coflow ID, flow ID, byte received counts,

number of open connections, and etc.) into a flow table.

Next, we describe how Gurita enforces LBEF without

requiring hardware modification. The scheduling policy is

then enforced in network by utilizing strict priority queuing

(SPQ) [24], a built-in feature in existing commodity switches

that utilizes multiple queues [1]. This enables packets

belonging to higher priority coflows to be processed ahead of

lower priority coflows. By exploiting SPQ to locally govern

inter coflows traffic, Gurita achieves approximate global

coordination. In other words, SPQ allows Gurita to function

similar to traffic road management, where traffic lights locally

govern road intersections, corresponding to commodity

switches in our case. As long as all parties on the street abide

by the traffic lights, which is the scheduling policy in this

analogy, approximate global coordination occurs, resulting in

smooth traffic.

In practice, bottleneck may occur in datacenter network due

to its bursty nature [17,23,40]. Leveraging SPQ to enforce the

scheduling policy in the switches naturally allows Gurita to

extend the description of machines in FFS-MJ (Definition 1)

to also include switches. The egress ports of these switches

function similarly to the machines in FFS-MJ such that jobs

are processed in sequential order according to the order of

switches in the path that connects senders and receivers,

where data traverses from senders to receivers. This

demonstrates that FFS-MJ is a proper problem to reduce to.

Moreover, given SPQ is a built-in feature in existing

commodity switches, this makes Gurita deployable friendly.

 The next discussion describes the details of how Gurita

leverages SPQ to coordinate coflows, as well as how to

address the drawback of SPQ.

Job and coflow prioritization. Consider 𝐾 priority queues in

commodity switches [1] and job’s stage 𝐽(𝒮) , priority 𝑃𝐽
𝑘

denotes 𝑘𝑡ℎ priority queue assigned to coflows in 𝐽(𝒮), such

that 0 ≤ 𝑘 ≤ 𝐾. Then, the priority arrangement is defined as

follows: 𝑃𝐽
0 > 𝑃𝐽

1 > ⋯ > 𝑃𝐽
𝑘 > ⋯ > 𝑃𝐽

𝐾 , where 𝑃𝐽
0 is the highest

priority and 𝑃𝐽
𝐾 is the lowest priority. Every 𝑃𝐽

𝑘 is associated

to threshold 𝒯𝑘 , where 𝒯0 < 𝒯1 < ⋯ < 𝒯𝑘 <. . < 𝒯𝐾 . Currently,

existing commodity switches typically support 8 priority

queues [1]. The priority decision is determined by comparing

Ψ𝐽(𝒮) to a set of thresholds. Initially, coflow 𝐶 ∈ 𝐽(𝒮) is

assigned to 𝑃𝐽
0, such that all flows in 𝐶 is also assigned to 𝑃𝐽

0.

All coflows in 𝐽(𝒮) are demoted to lower priority when the

estimated blocking effect Ψ𝐽(𝒮) exceeds threshold 𝒯𝑘, for 0 ≤

𝑘 ≤ 𝐾. In other words, in stage 𝒮, coflow 𝐶 ∈ 𝐽(𝒮) transmits

data at priority 𝑃𝐽
𝑘 when 𝒯𝑘−1 < Ψ𝐽(𝒮) ≤ 𝒯𝑘 is satisfied.

Otherwise, job 𝐽 is demoted to priority 𝑃𝐽
𝑘+1. When Ψ𝐽(𝒮) >

𝒯𝐾 , job 𝐽(𝒮) will be assigned to priority 𝑃𝐽
𝐾 . When stage 𝒮

completes, Gurita adjusts the priority assignment of job

𝐽(𝒮 + 1) according to Ψ𝐽(𝒮 + 1). These thresholds are

determined using exponentially-spaced as recommended by

[5]. As part of our future work, we will extend the study in

[35] on using machine learning to determine thresholds.

Priority decision. Job priority is determined by a head

receiver (HR). HR is the first receiver of invoked in a coflow.

Other receivers learn about HR (e.g. HR’s IP address) from

the “master” (or “manager” or “coordinator”) [18,19, 20, 21]

if these receivers are invoked by the master. If new receiver

are invoked by existing receiver, then parent receivers

inform their children about HR. The HR then determines job

priority using eq. (3) and information collected from other

receivers of the same job. Once HR communicates the priority

decision to the receiver, the receiver informs its senders using

reserved field in the TCP header of ACK packet about the

decision. Then, the senders sets DSCP bits in the IP header of

their outgoing packets accordingly. Here, Gurita uses DSCP

to communicate priority decision and to schedule coflows.

Next, receivers provide updates on locally-observed

information (e.g. byte received at the receiver’s end, etc.) to

HR at regular interval of δ unit time. Information such as

number of flows is determined by counting the number of

open connections. Therefore, the HR utilizes information

collected from its peers to determine job priority, and HR

communicates the decision to other receivers through update

messages. Upon receiving updates from HR, receivers

compare the new priorities with the old ones. If new priorities

are lower than the old ones, then receivers update their

respective flows to transmit data according to the new

priorities. Otherwise, flows continue the transmitting using

the old priorities.

Some coflows of a job are too small to wait for decisions

from HR. Therefore, newly-arriving flows of coflow are

automatically assigned the highest priority and are allowed to

transmit data at that priority until a threshold is exceeded or

an update is received from HR. Last, when a receiver

completes its task (all senders close their connections to their

receiver), the receiver informs their HR, and the HR excludes

information of completed flows from being considered to

determine job blocking effect, and HR updates Ψ𝐽(𝒮).

Starvation Mitigation. As pointed in [14, 25], SPQ based

schedulers often introduce starvation, where low priority

traffic is denied resources. To alleviate the starvation

problem, we emulate SPQ by mimicking the behavior of SPQ

using Weight Round Robin (WRR) [24]. This allows lower

priority traffic to transmit data at much lower rate than higher

priority traffic. Emulation is achieved by using per queue

waiting time in SPQ scenario to determine the weight of each

queue in WRR scenario, which is described as follows. Given

a link of capacity 𝐵 (i.e. bandwidth), the traffic load in

priority queue 0 at each link is 𝜌0 =
𝜆0

𝐵
 , where 𝜆0 denotes

arrival rate at priority queue 0. Information on arrival rate is

generally available and can be retrieved from switches [1].

Then, the average waiting time 𝑊0 in priority queue 0 under

SPQ is 𝑊0 =
𝐵

1−𝜌0
 [36] Given 𝑘 priority queues, the average

wait time at the 𝑘𝑡ℎ priority queue is

𝑊𝑘 =
𝐵

(1 − 𝜌0 − ⋯ − 𝜌𝑘−1)(1 − 𝜌0 − ⋯ − 𝜌𝑘)
 .

Next, we utilize average waiting time 𝑊𝑘 to determine the

weight of 𝑖𝑡ℎ queue in WRR scheme 𝜔𝑖 as follows.

𝜔𝑖 =
𝑊𝑖

∑ 𝑊𝑗
𝑘
𝑗=0

 ,

 for 𝑖 = 0, 1, … , 𝑘 and ∑ 𝜔𝑖
𝑘
𝑖=0 = 1. After that, the rate allocated

to 𝑖𝑡ℎ queue in WRR scenario is determined by 𝜔𝑖 ∗ 𝐵. This

completes SPQ emulation using WRR, which allows Gurita

to resolve starvation in SPQ.

V. EVALUATION

In this section, we evaluate the performance of Gurita

through large scale simulation using data trace collected from

Facebook datacenter. Our primary metrics for comparison is

the average CCTs and performance improvement factor,

which is described as follows.

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =
𝐶𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝐽𝐶𝑇𝑠

𝐺𝑢𝑟𝑖𝑡𝑎′𝑠 𝐽𝐶𝑇𝑠

If the improvement is greater (smaller) than one, Gurita is

faster (slower). Additionally, performance is evaluated in

seven different categories of job size as described in table 1.

We compare Gurita to existing solutions that do not rely on a

central controller, as well a solution that requires one.

The main results are summarized below:

1. Our experiments show that Gurita outperforms the baseline

and decentralize solutions (Baraat [3] and Stream [4]) by up

to 2× and 1.8× faster on average respectively. Relative to

the centralized solution with global view, Aalo [5], Gurita

is able to match the performance without complete

information.

2. In Bursty traffic scenario in large scale network, Gurita

achieves a faster average JTT with small jobs (job in

category 1 of table 1) by up to 2× and 1.7× compared to

the baseline and decentralize solutions. Relative to Aalo,

Gurita also achieves similar performance.

3. In comparison to GuritaPlus, a scheduler with coflow

information available ahead of time, Gurita achieves

comparable performance.

Trace Driven Simulations

In this section, we analyze the performance of Gurita

through simulation experiments.

Simulation setting: We develop a flow-level simulator and it

accounts for the flow arrival and departure events, rather than

packet sending and receiving events. It updates the rate and

the remaining volume of each flow when event occurs. Our

simulations employ 8 pods FatTree network topology [26]

(Figure 4.c) with 128 servers and 80 switches. Here, we utilize

10 Gigabit (10G) switches in our evaluation.

In our simulations, we compare Gurita’s performance to

Per Flow Fair Sharing, Baraat [3], Stream [14], and Aalo [5].

Per-Flow-Fair-Sharing (PFS) mechanism is a scheduling

scheme that divides the resource capacity equally among

flows traversing the same link, which is also the baseline in

our analysis. Baraat, a FIFO with limited multiplexing (FIFO-

LM) scheduler, is the current state of the art decentralized

scheduler. Stream, another decentralized scheduling scheme,

leverages coflow communication pattern to schedule coflows.

Figure 5. Average performance in a scenario utilizing production trace with

Facebook (FB-t) and Cloudera (CD-t) structure and in bursty scenario

Facebook (FB-b) and Cloudera (CD-b).

Figure 6. Average JCT in seven categories from replying production data

trace with FB-Tao (Fig. 6.a) and TPC-DS (Fig. 6.b) structure.

I II III IV V VI VII

6MB-

80MB

81MB-

800MB

801MB-

8GB

8GB-

10GB

10GB-

100GB

100GB-

1TB

> 1TB

Table 1. Seven categories of multi-stage job size.

To analyze how Gurita performs against centralized

solution, we compare our solution to Aalo. For simplicity,

Aalo’s additional delay from managing centralized system is

not considered in the simulator and information on job is

made available instantaneously to the centralized controller.

Additionally, we employ four priority queues in Aalo, Stream,

and Gurita, sufficient to provide the satisfactory outcomes

according to findings in [5, 14]. In principle, all schemes

assume that job characteristics are unknown ahead of time.

Moreover, in our simulation, the dependency between

coflows in a job is detected when one of the sender sends

requests to a set of senders (or a sender) for data.

Traffic pattern and load. To evaluate Gurita’s performance,

we use production trace collected from 150-racks (3000

machines) in Facebook datacenter. Then, we further evaluate

Gurita in bursty scenario, which is when jobs arrive within

small time intervals, a common occurrence in datacenter [17].

Facebook trace does not provide details at flows, coflows, or

jobs level, including information on job structure. For

example, the data trace does not specify the relationship

between coflows. Therefore, we utilize industrial benchmark

Cloudera Industrial benchmark, TPC-DS query-42 (TPC-DS)

[4], and Facebook Tao structure (FB-Tao) [10] to generate

DAG structure (Figure 4a and 4b). Each DAG structure is

made up of coflows that are exact replications of jobs taken

from the original trace.

Our simulation also employs Equal-Cost multi-path

routing (ECMP) [24], that is commonly used in datacenter to

route packets and load balance network in datacenter, is also

incorporated into our flow simulator. Additionally, since TCP

is the common transport protocol in datacenter, we implement

rate limiter that behaves like TCP for all schemes, except for

Baraat where the rate limiter is implemented according to its

design in [3].

Figure 7. Average JCT in seven categories with FB-Tao (Fig. 7.a) and TPC-

DS (Fig. 7.b) structure in bursty traffic scenario.

Figure 8. Average JCT in seven categories against the ideal Gurita (Gurita+)

with FB-Tao (Fig. 8.a) and TPC-DS (Fig. 8.b) structure.

Simulation results. Here, we discuss Gurita’s average

performance in trace driven and bursty scenarios (Figure 5).

Our experiment demonstrates that Gurita outperforms PFS by

up to 2× in both scenarios (TPC-DS and FB-Tao). This is

because Gurita dedicates its resources to higher priority jobs

allowing more coflows in the network, while PFS allocates its

resources equally among flows of coflow from different jobs

that traversing the same link.

Gurita also outperforms Baraat by up to 1.8× faster in both

scenarios. Baraat’s performance suffers from lower priority

0

1

2

FB-trace CD-trace FB-burst CD-burst

Im
p
ro

ve
m

e
n
t

DAG Structure-Scenario

Baraat PFS Stream Aalo

0

1

2

3

4

5

6

I II III IV V VI VII

Im
p
ro

ve
m

e
n
t

Categories

Baraat
PFS
Stream
Aalo

a)

0

1

2

3

4

5

6

7

8

9

I II III IV V VI VII

Im
p
ro

ve
m

e
n
t

Category

Baraat

PFS

Stream

Aalo

0

1

2

I II III IV V VI VII

Im
p
ro

ve
m

e
n
t

Category

Baraat PFS Stream Aalo

a
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

I II III IV V VI VII

Im
p
ro

ve
m

e
n
t

Category

Baraat PFS Stream Aalo

b)

0

0.2

0.4

0.6

0.8

1

I II III IV V VI VII

Im
p
ro

ve
m

e
n
t

Categories
a)

0

0.2

0.4

0.6

0.8

1

I II III IV V VI VII

Im
p
ro

ve
m

e
n
t

Categories
b)

mice coflows queuing behind larger higher priority coflows in

every job stage. Gurita is able to avoid this problem by

allowing smaller coflows in a job stage to jump ahead of the

queue, enabling job stages with fewer bytes to complete

faster. In other words, Baraat punishes jobs for sending more

bytes in some stages but fewer bytes in other stages by forcing

them to share the resources with lower priority jobs. In

contrast, Gurita is sensitive to the characteristic of multi-stage

allowing larger jobs to accelerate their completion time when

they have less bytes to send in some stages and at the same

time to avoid being blocked by other jobs. Thus, Gurita allows

larger jobs to complete faster.

Compared to Stream, Gurita achieves better average JCT

by up to 1.5× faster in both scenarios. This is because Gurita

allows larger jobs to shorten their JCT by allowing them to

send data at a higher priority when they transmit less data in

a stage, at the same time making more resources available to

process more jobs. In contrast, Stream requires larger jobs to

transmit at lower priority regardless of the amount of byte sent

per stage, at the same time blocking jobs from resources.

Another advantage of Gurita over these decentralized

schemes (Baraat, PFS, and Stream) is that, by prioritizing of

Jobs with lower per stage blocking effect, it frees up more

resources for other jobs. Thus, it achieves faster per stage

completion time resulting in lower job completion time.

Compared to centralized scheme Aalo with global view,

Gurita achieves similar performance with less information by

up to 1.05× faster in trace driven scenario but slightly slower

in bursty scenario at just 0.01× slower. The key insight is jobs

in Aalo may experience blocking, while Gurita leverage

insight from the characteristic of multi-stage job to help jobs

to avoid being blocked by other jobs with higher blocking

effects.

Trace driven scenario. Next, we delve deeper by

analyzing Gurita in seven different job categories described in

table 1 (Figure 6) using data trace from Facebook datacenter.

Gurita outperforms PFS across all categories, particularly for

jobs in categories I and II (smaller size jobs) by up to 8.5×

better performance. Similarly, Gurita also outperforms Baraat

across all categories by up 5 × faster. In comparison to

Stream, Gurita achieves better performance in category

acrosscategories in both scenarios, because measuring

blocking effect per stage enables Gurita to quickly recognize

jobs with fewer bytes per stage. Moreover, Gurita allocates

more resources to allow larger jobs to transmit at a higher

priority when they have less bytes in a stage, allowing them

to complete faster while Stream punishes jobs for sending

more bytes early. Therefore, by considering job blocking

effect per stage, Gurita improves the average JCT and

outperforms Stream in most categories by up to 4× faster.

Compared to Aalo, Gurita matches outcomes across

categories with TPC-DS. However, Gurita’s performance is

comparable in category I with the FB-Tao structure at just

0.1 × slower. In this instance, Aalo is slightly more

advantageous over Gurita (by 0.1× faster) because it is a

centralized system with a global view, enabling it to be more

precise in distinguishing small jobs. By recognizing the

characteristic of multi-stage, Gurita matches the performance

of the centralized solution without complete information.

Bursty traffic scenario in large scale network. In this

scenario (Figure 7), jobs arrive within 2 microseconds

intervals [17, 32] in much larger (48 pods FatTree) network

topology of which consisting of 27648 servers and 2880

switches. Since the production trace used in the previous

experiment is too small to generate network congestion, we

generate 10000 jobs according workload provided in [4].

Here, we demonstrate that Gurita is scalable and is also

able to precisely differentiate job’s characteristics at different

stages when jobs arrive within a small time interval. In Figure

7, Gurita outperforms PFS across all categories by up to 2×

faster across all categories in both scenarios (FB-Tao and

TPC-DS). Compared to Baraat, Gurita achieves 1.8 ×

improvement with lower JCT across all categories. Gurita

also largely outperforms Stream by up to 1.9× faster JCT

across all categories, except in category 1 in both scenario.

This is because Stream utilizes strict priority queue to

schedule coflow of different jobs, which allows Stream to

quickly allocate the entire resources to small jobs (job in

category 1 of table 1).

On the other hand, Gurita allocates some portions of the

resources to mitigate starvation that can occur to jobs with

lower priority [14, 25]. Generally, Gurita matches the

performance compared to Aalo across categories. In these

experiments, we have demonstrated that considering job

characteristics granularity at different stage allowing Gurita

to outperform PFS, Baraat, and Stream. At the same time,

Gurita matches the performance of the centralized scheme

with global view, Aalo.

Comparison to GuritaPlus. Here, we compare Gurita to an

enhanced version, we call it GuritaPlus, where information on

the total amount of bytes sent per stage is available and job

priority can be adjusted spontaneously without concerning

TCP out of order problem. GuritaPlus determines the

blocking effect per stage by utilizing total in-flight bytes sent

per stage. In-flight bytes are bytes that have been transmitted

into the network but have not reached the destination. These

assumptions allow GuritaPlus to be more precise in the

scheduling decision.

Additionally, the simulation is also conducted using trace

from Facebook datacenter in 8 pods FatTree network. Figure

8 demonstrates that Gurita achieves similar outcome

compared to GuritaPlus across categories. In the worst case,

Gurita is only slightly behind GuritaPlus by at most within

0.15% of GuritaPlus’ performance. These outcomes

demonstrate that the utilization of observed information at the

receiver’s end also provides sufficient approximation of a

more ideal scenario that used the total amount of in-flight

bytes per stage.

RELATED WORK

One of the early works on this theme is Orchestra [6], where

the semantic among flows is accounted in the design of the

flow transfers optimization. Varys [4] and Aalo [5] improve

the performance in [6] by adopting Shortest Job First (SJF) in

their scheduling mechanisms. RAPIER [7] and OMCoflow

[13] incorporate routing algorithm into the scheduling

scheme. The authors of [9,11] formulate the scheduling

problem into weighted CCTs minimization problem. CODA

[12] leverages machine learning techniques to infer and

schedule coflows. Baraat [3], a heuristic that adopts FIFO

with some level of multiplexing allows mice flows to be

processed in the background in the presence of large coflows.

Stream [13] and Creek [41] are coflow scheduling schemes

that takes advantage of coflow communication patterns.

Coflex [34] is a coflow scheduling that takes max-min

fairness into consideration. MCS [38] schedules coflows

according to number of flows and flow length of a coflow.

Another study in MRTF [39] propose a coflow scheduling

scheme that takes in-network congestion in the design

consideration. All of these approaches use total accumulated

bytes sent to schedule coflows, but overlooks that multi-stage

coflows may different characteristics and transmit different

amount of bytes at different stages. However, it assumes that

job size and structure are known ahead of time, limiting use

in practice.

VI. CONCLUSION

Gurita is a scheduling scheme for coflows of multi-stage

job that leverages job and coflow characteristics at different

stages to minimize average JCT without resorting to central

controller. The outcomes from our experiments demonstrate

that Gurita is an effective solution in improving network

performance in datacenter. Gurita outperforms decentralized

schemes such as PFS, Baraat and Stream, and matches the

performance of the centralized scheme Aalo that has access to

global view, despite Gurita not having complete information.

Reference
1. http://www.pica8.com/documents/pica8-datasheet-picos.pdf
2. T. Gonzales and S. Sahni, “Open Shop Scheduling to Minimize Finish

Time” J. for ACM Vol 23, No. 4, 1976, pp 665-679.
3. F. Dogar, et al, “Decentralized Task-Aware Schduling for Data Center

Networks”, ACM SIGCOMM, 2014.
4. M. Chowdhury, Y. Zhong, and I. Stoica, ”Efficient Coflow Scheduling

with Varys”, ACM SIGCOMM, 2014.
5. M. Chowdhury and I. Stoica, ”Efficient Coflow Schduling Without

Prior Knowldege”, ACM SIGCOMM, 2015.
6. M. Chowdhury, et al,”Managing Data Transfer in Computer Clusters

with Orchestra”, ACM SIGCOMM, 2011.
7. Y. Zho, et al, “RAPIER: Integrating Routing and Scheduling for

Coflow-aware Data Center Networks”, IEEE INFOCOM 2015.
8. Z. Huang, et al “Need for Speed: CORA Scheduler for Optimizing

Completion Time in the Cloud”, INFOCOM 2015.
9. Z. Qiu, et al, “ Minimizing the Total Weighted Completion Time of

Coflows in Datacenter Networks”, ACM SPAA, 2015.
10. N Bronson, et al, “TAO: Facebook’s Distributed Data Store for the

Social Graph”, USENIX ATC, 2013..
11. B. Tian, et al., “Scheduling Coflows of Multi-stage Jobs to Minimize

the Total Weighted Job Completion Time”, IEEE INFOCOM, 2018.
12. H. Zhang, et al.,”CODA: Toward Automatically Identifying and

Scheduling Coflows in the Dark”, ACM SIGCOMM, 2016.
13. Y. Li, et al.,”Efficient Online Coflow Routing and Scheduling”, ACM

MOBICHOC, 2016.
14. H. Susanto, et al., “Stream: Decentralized Opportunistic Inter Coflows

Scheduling for Datacenter Networks”, IEEE ICNP, 2016.
15. M. Chowdhury and I. Stoica, “Coflow: A Networking Abstraction for

Cluster Applications”, USENIX HotNets, 2012.
16. A. Roy, et al, “Inside the Social Network’s (Datacenter) Network,” in

ACM SIGCOMM, 2015.
17. T. Benson, A. Akella, and D. A. Maltz, ”Network Traffic

Characteristics of Data Centers in the Wild”, ACM IMC, 2010.
18. J. Dean and S. Ghemawat, “MapReduce: Simplifed Data Processing on

Large Clusters”, USENIX OSDI, 2004.
19. G. Malewicz, et al.,”Pregel: A System for Large-Scale Graph

Processing”, ACM SIGMOD, 2008.
20. M. Zhaharia, et al., “Resilent Distributed Datasets: A Fault-Tolerant

Abstraction for in-Memory Custer Computing”, USENIX NSDI, 2008.

21. Y. Yu, et al., “DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High Lelvel Language”, OSDI, 2012.

22. NetFilter Packet Filtering Framework for Linux, www.netfilter.org/
23. M. Alizadeh, et al, “Data Center TCP (DCTCP)”, SIGCOMM, 2010.
24. J. Kurose and K. Ross, “Computer Networking, a Top Down Approach

6th addition”, Pearson, 2013.
25. W. Bai, et al, ”Information-Agnostic Flow Scheduling for Comodity

Data Centers”, USENIX NSDI, 2015.
26. M. Al-Fares, A. Laukissas, and A. Vahdat, “A Scalable, Commodity

Data Center Network Architecture”, ACM SIGCOMM, 2008.
27. E. Tardos and J. Kleinberg, “Algorithm Design”, Pearson, 2005.
28. R. Grandl, et al, “Graphene: Packing and Dependency-aware

Scheduling for Data-Parallel Clusters”, USENIX OSDI, 2016.
29. A Hash Function for Hash Table Lookup, http: //burtleburtle.Net/bob/

hash/doobs.html
30. S. M. Johnson, “Optimal Two and Tree Stage Production Schedules

with Set-up Time Included”, Naval Research Log. Quart. Vol. 1, 1954.
31. B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlos, “On Scheduling in

Map-Reduce and Flow-Shops”, ACM SPAA, 2011.
32. L. A. Hall, “Approximity of Flow Shop Scheduling”, FOCS, 1995.
33. M. R., Johnson, et al. ,“The complexity of flowshop and jobshop

scheduling”. Mathematics of operations research, 1(2), 117-129 (1976).

34. W. Wang S. Ma, B. Li, and B. Li, “Coflex: Navigating the Fairness-

Efficiency Tradeoff for Coflow Scheduling”, IEEE INFOCOM, 2017.

35. P. Poupart, et al., “Online Flow Size Prediction for Improved network
Routing”, IEEE ICNP, 2016.

36. L. Kleinrock, “Queuing Systems Vol. 2 Computer Application”, New

York, Wiley, 1976.

37. S. Wang, et al., “Multi-Attributes-Based Coflow Scheduling Without

Prior Knowledge”, IEEE/ACM ToN, Vol 26, NO. 4, August 2018.
38. A. A. Nair, et al., “A First-Order Mechanistic Model for Atchitectural

Vunerability Factor”, ISCA, 2012.

39. T. Zhang, et al., “Distributed Bottle-Aware Coflow scheduling in Data

Centers “, ACM TPDS, 2018.

40. G. Judd, “Attaining Promise and Avoiding Pitfalls of TCP in the
Datacenter”, USENIX NSDI, 2015.

41. H. Susanto, “Creek: Inter Many-to-Many Coflows Scheduling for

Datacenter Networks, IEEE ICC, 2019.
42. A. M. Abdelmoniem, B. Bensaou. “Efficient Switch-Assisted

Congestion Control for Data Centers: an Implementation and
Evaluation”, IEEE IPCCC, 2015.

43. A. M. Abdelmoniem, B. Bensaou., “HyGenICC: hypervisor-based
generic IP congestion control for virtualized data centers”, IEEE ICC,
2016.

44. A. M. Abdelmoniem, B. Bensaou., “IncastGuard: An efficient TCP-
incast mitigation mechanism for cloud networks”, IEEE Globecom,
2018.

45. A. M. Abdelmoniem, B. Bensaou., “SDN-based Incast Congestion
Control Framework for Data Centers: Implementation and Evaluation”,

46. A. J. Abu, B. Bensaou and A. M. Abdelmoniem, "A Markov model of
CCN pending interest table occupancy with interest timeout and
retries,", IEEE ICC, 2016

47. A. S. Sabyasachi, H. M. D. Kabir, A. M. Abdelmoniem and S. K.
Mondal, "A Resilient Auction Framework for Deadline-Aware Jobs in
Cloud Spot Market,", IEEE, SRDS, 2017.

	I. Introduction
	II. Background, Model, and Motivation
	III. Multi-Stage Coflow
	A. Problem Formulation
	B. Flexible Flow Shop Problem for Multi-Stage Jobs
	C. Characteristics in Multi-Stage Job

	IV. Gurita’s Rules and Scheduling Scheme
	A. Gurita’s Rules
	B. Coflow Scheduler

	V. Evaluation
	Trace Driven Simulations

	Related Work
	VI. Conclusion

