
A Change Execution System for Enterprise Services

with Compensation Support

Félix Cuadrado
1
, Rodrigo García-Carmona

1
, Álvaro Navas

1
, Juan C. Dueñas

1

1 Universidad Politécnica de Madrid, ETSI Telecomunicación,

 Ciudad Universitaria s/n. 28040, Madrid, Spain

{fcuadrado, jcduenas, rodrigo, anavas}@dit.upm.es

Abstract. Modern enterprises rely on a distributed IT infrastructure to execute

their business processes, adopting Service Oriented Architectures in order to

improve the flexibility and ease of adaptation of their functions. Nowadays this

is a vital characteristic, as the increased competition forces companies to

continuously evolve and adapt. SOA applications must be supported by

management and deployment systems, which have to continuously apply

modifications to the distributed infrastructure. This article presents a model-

based solution for automatically applying change plans to heterogeneous

enterprise managed environments. The proposed solution uses models which

describe in an abstract language the changes that need to be applied to the

environment, and executes all the required operations to the specific managed

elements. Also, to ensure that the environment ends in a stable state,

compensation for previously executed operations is supported. The validation

results from a case study taken from the banking domain are also presented

here.

Keywords: Service deployment, Plan execution, Enterprise Infrastructure,

Compensation Support, Model-Based Management.

1 Introduction

In a globalized world enterprises have to face greatly increased competition,

demanding agility to release new products and update to customer demands. These

factors have lead to the adoption of the service oriented paradigm. This paradigm

produces execution infrastructures composed by multiple, heterogeneous servers with

specialized roles, distributed over a network. This setup greatly complicates technical

management processes, such as diagnosing the environment status, planning the

required changes or applying corrections to improve its performance.

Frequently those tasks are executed manually by an IT administrator, but this

approach is very costly and hampers the desired agility. Therefore, an increased

degree of automation in service change management operations is a must for

obtaining the potential advantages of the service oriented approach. A change

execution system that coordinates operations over the distributed servers and

containers is needed. However, this is complicated by the fact that the actual

mailto:fcuadrado%7d@dit.upm.es

composition of the managed environment is unknown at design time (both in number

of elements and types of infrastructure systems. This can be addressed by adopting a

model-based abstraction layer for describing the operations and the runtime elements.

This way, the resulting system can flexibly adapt to the specifics of each environment.

At the same time, the critical non-functional requirements for enterprise systems

need also to be supported by these management functions: The stability of the

managed environment must be preserved by the operation systems, as otherwise the

economic impact would be enormous. This way, if during a change execution

operation an unexpected event occurs, the incidence should be detected and the

system should try to restore the original state.

This paper presents a model-based architecture of a system for applying

deployment and configuration changes to a complex enterprise system. The presented

solution automatically adapts to the characteristics of each targeted environment,

combining an extensible architecture with the use of model abstractions for

representing the operations. On top of that, the actual execution of the changes is

carried out with a fine control thanks to business process technologies. This enables

the definition of an algorithm for inverse operation identification and compensation

plan dynamic creation. The system has been developed with the concerns of the

enterprise banking domain under the context of the ITECBAN project. This project

combines the research efforts of banking and consulting companies, as well as

academia, to try to provide a complete core banking service oriented solution.

 The structure of the paper is as follows. Next section provides an overview on the

most relevant initiatives related to deployment and configuration changes execution

over distributed environments. Section three describes the model needed to support

the system. The next section details the most relevant aspects of the decided

architecture. Once the proposed solution has been completely described, section 5

presents a case study used to validate these contributions. Finally, the paper finishes

with some general conclusions possible continuation for this work.

2 Related Approaches on Distributed Configuration Activities

Execution

Automated execution of changes into a distributed heterogeneous environment

represents a research challenge which has been addressed from different approaches.

Although most of them follow the Information Technologies Infrastructure Library

(ITIL) definition of the change management process [1], they differ on how to

implement that definition. One of the more important aspects is how to define the

change plan, containing the operations that will lead from a stable state to the state

specified by the Request for Change (RFC) submission.

There are other problems related to the definition of a plan and how to implement

it. First, an abstract definition of the operations is needed so the model is valid in

heterogeneous environments. Another critical problem related with defining a plan is

how to determine the order in which each operation must be carried out.

Regarding the plan definition, the Object Management Group (OMG) provides, in

Deployment & Configuration of Component-based Distributed Applications, v4.0 [2],

a model for the deployment plan, which is implemented by some systems such as

Darca[3]. However, this specification is too centered on installation activities in

homogeneous environments, lacking support for both the management of the whole

artifact life cycle and establishing an order in which the activities must be performed.

Implementations of change execution managers offer a wide range of solutions.

Champs [4] proposes the use of a temporal planner to create plans, taking in account

the defined policies and Service Level Agreements (SLA). Plans are defined using

Business Process Execution Language for WebServices (WS-BPEL) [5]. The change

plan tries to maximize parallel execution of activities, thanks to the use of Constraint

Satisfaction Problem techniques. This is done at the cost of flexibility, not being able

to adapt to errors or changes during execution.

Other systems, such as ChangeLedge [6], propose a model which considers that

operations can go wrong, and systems can make a rollback. In ChangeLedge, when a

plan fails, the system automatically stops the execution and creates a rollback plan

defined in BPEL[7], forcing each atomic action to rollback. On top of that,

ChangeLedge adds the remediation plan concept [8], where the Change Plan designer

has the opportunity to define an alternative plan that is executed automatically when

one of the reversible activities fails to complete, along with the previous support for

rollback. The main problem with Changeledge is the increased human effort in the

design phase, as a human operator must not only to specify the RFC submission, but

also to complete the definition of the change plan, and to design the rollback and

remediation actions.

Other approaches use a planner based on absolute time. The PlanIT system [9] is

an automatic configuration change planner for distributed systems that uses the

Planning Domain Definition Language (PDDL) for defining components,

environments and plans. Each activity in the change plan is defined both by the

description of what it does and the absolute time at which it must be executed.

Ecotopia [10] is a framework that tries to minimize the service-delivery

disruptions caused by changes, producing a change plan in which the activities are

executed when they cause less impact on the system. This absolute temporal planning

approach requires knowing with a high degree of confidence the estimated time to

complete each activity, but the uncertainty which characterizes enterprise

environments makes this approach unfeasible.

Finally, the most common approach consists in using manually configured scripts,

such as Apache Ant, to define and execute the tasks that must be performed.

3 A Model-based Deployment and Configuration Architecture

Our research inside the ITECBAN project has been focused on improving the

operation processes for the complete lifecycle of banking services, such as

provisioning of updated components, replacement of no longer needed ones, or

decommission after its complete working period has expired. To support these

functions a deployment and configuration architecture has been designed and

implemented. This architecture needed to reason about the management environment

generically, without being tied to a specific platform or service type. To achieve it, we

used models as an abstraction layer to the real elements of the system. This way, the

operations are performed by a set of loosely coupled services that communicate

through model instances.

A typical example of these functions is the deployment of a new service to the

managed environment. This is achieved by the architecture through the invocation of

several components which, starting from an initial objective (the provisioning of the

service), perform tasks such as connecting to the instrumentation agents for retrieving

the runtime information, accessing software repositories, deciding which compatible

version of a service to use or choosing where each deployable artifact should be

physically located. As a result, a Deployment Plan with these tasks is produced. This

plan is a model specifying what changes must be applied to the environment in order

to achieve the desired objective.

The change execution service takes a plan as an input and applies the changes

defined in it to the managed environment. This service must support the heterogeneity

of the execution platform, since the plan is composed of multiple operations over the

distributed hardware and middleware elements whose exact nature is not known

beforehand. Therefore the change execution service must be flexible and extensible

enough to adapt to the environment composition.

Also, the operations executed by this service must leave the environment in a

stable state.

3.1 The Deployment Plan Model

The Deployment Plan model allows to define what changes must be applied to the

managed environment in order to achieve a business objective: Each operation, the

physical elements which are affected, and the constraints for applying them correctly.

Its metamodel is defined in EMF (Eclipse Modeling Framework) Ecore [11], an

implementation of EMOF (Essential MOF). The next picture shows the main

elements of the metamodel.

INSTALL_DEPLOYMENT_UNIT

UPDATE_DEPLOYMENT_UNIT

UNINSTALL_DEPLOYMENT_UNIT

START_DEPLOYMENT_UNIT

STOP_DEPLOYMENT_UNIT

DeploymentActivityType

type: ResourceActivityType

Res: Resource

ResourceActivity

name: string

env: Environment

ChangePlan

target: Resource

Activity1..*

 activities

0..*

dependencies

type: DeploymentActivityType

unit: DeploymentUnit

DeploymentActivity

type: ConfigurationActivityType

properties: list<Property>

ConfigurationActivity

ADD_CONTAINER_RESOURCE

REMOVE_CONTAINER_RESOURCE

ResourceActivityType

CONFIG_CONTAINER_RESOURCE

CONFIG_UNIT_PROPERTIES

CONFIG_UNIT_BINDING

ConfigurationActivityType

Fig. 1 Deployment Plan metamodel

The root entity is the Deployment Plan, which is uniquely identified by a name,

and explicitly refers to the environment where it will be executed. A plan is composed

by a set of Activities, which correspond to the change operations that can be initiated

by the management architecture. Each Activity identifies the target Resource from the

runtime environment where it will be applied (application servers, EAR files, Web

Services, etc). There are ten specific change operations which can be included as part

of a plan, which have been grouped into three Activity subclasses. Each subclass

allows the identification of the specific type of primitive (e.g. installation instead of

update or uninstallation), provides additional information about the required

execution parameters and restricts which resources can be targeted.

Deployment Activities control the life cycle of the runtime deployed artifacts. They

include installation, activation, update, deactivation, and uninstallation. Resource

Activities allow the creation or removal of resources of runtime containers, like

application servers or databases. Finally, Configuration Activities modify the

configuration of existing resources updating their properties.

In addition to defining the Activities, it is necessary to provide a mechanism to

restrict how they must be executed. In the state of the art analysis multiple

mechanisms were presented for linking the plan activities. Considering the

heterogeneous nature of the elements, the simplest mechanism has been selected:

Each Activity can identify any number of Activities as dependant ones, meaning that

its execution will not start before all of them have finished theirs. This is identical to

the Ant target dependency. Provides enough expressivity to know if the execution has

been correct and is generic enough to be applied to a great variety of activities.

4 Change Plan Executor Architecture

The Change Plan Executor has been designed as a service-based application. This

is supported not only by the adoption of Web Services as the remote communication

mechanism but also by using the OSGi platform [12. for its internal structure. This

framework provides a powerful component model and a local service registry where

dynamic registration and binding of services can be achieved.

The system is composed by three collaborating elements which implement the

complete plan execution process, as is shown in Fig. 2 The plan parser service sorts

the plan activities and builds an execution flow which respects their dependencies.

Each node from the flow is associated to a different executor service which can apply

the specific changes to the targeted system. The execution service controls the

application of the changes defined in the flow, verifying their correction and

respecting the set order.

For increasing control over its application, the execution flow has been modeled

internally as a process using the Process Virtual Machine (PVM) language [13. . This

language serves as a metamodel in JBPM (JBoss Business Process Management) for

defining specific process languages such as jPDL or BPEL. It contains only the base

process concepts (nodes, transitions) and provides a process execution service which

allows rich control over the process execution. This way, the benefits of business

process approaches are obtained without having to adopt an excessively complex

language (such as BPEL) which would needlessly complicate the internal model.

Therefore, the change process is composed by nodes and transitions, with each node

representing the execution of a change plan activity over a runtime target (e.g. deploy

a WAR artifact to a Glassfish application server, or configure the service port of an

Apache http server).

Plan

Parser

Service

Execution

Service

1

2

3

4
5

Plan

Model

Node

#5

Node

#4

Node

#3

Node

#2
Install DU

WebSphere

Executor

Executor

Node

#1

ExecutorExecutorExecutor

Plan Process

Executor Registry

Install DU

Executor

Install DU

Executor

Install DU

Executor

Install DU

Executor

Install DU

Executor

Install DU

Executor

Install DU

Executor

Install DU

WebSphere

Executor

Environment

invokes

modifies

searches

creates

Fig. 2 Change Execution System Architecture

In order to generate a PVM process the plan parser service takes as input the

deployment plan (a graph with multiple ways to process it) and produces a sequence

with only one way of traversing it. This way the execution service knows in which

exact order has to process it and what activities have already been executed. This is

especially important for the compensation mechanism described in the next section.

Each process node is related to one executor service. These services are entities

capable of executing a plan activity type in a specific container. They translate the

generic activities into specific operations (e.g. invoking an Ant script, or connecting

to the management interface of a server). These elements are published in the internal

registry. The parser automatically matches plan activities with the available executors

and associates a valid executor to each process node. This approach enables the

executor architecture to be extensible and automatically adapt to plans executed over

different environments with heterogeneous technologies.

Finally, the execution service controls the application of the defined change

processes, by orchestrating the invocation of the executors associated to each node.

Along this process, it also generates a report on the result of the plan execution,

aggregating the outcome of each activity (generated by each executor). The service is

highly flexible in the execution mechanism, supporting multiple execution modes

including human-controlled operation (with an administrator invoking each step of

the process) and completely automated execution with and without compensation

execution. Because of its relevance, we will detail the internal mechanism for

supporting automatic plan compensation execution.

In order for the change execution service to respect the system stability, it is

mandatory to ensure that the applied changes do not negatively affect the state of the

environment. This has been supported by providing compensation execution

capabilities to the system. This characteristic of the architecture is supported by two

mandatory capabilities of every executor: 1) Their execution is atomic, 2) The result

of their execution is notified (successful or not, informing in the latter case about the

type of error). These requirements enable us to know exactly in which point of its

execution a plan has failed and in which state it is.

The compensation module starts to work whenever any of the process executors

reports an error on its execution. Since the execution has been sorted as a sequence of

operations, in order to compensate its results, it is necessary to reverse the changes

from the activities which have been already carried out. The activity that has failed

does not need to be compensated since, being atomic, no change has been performed.

The task of determining what operation will counter each applied change is

nontrivial, but it can be automated thanks to the defined plan model. Each one of the

ten primitives which can appear at a deployment plan has been formally defined,

including the required arguments, and the effect it will cause on the managed

environment (e.g. deploying a new artifact over a container will cause a new web

application to exist). By looking at that information, as well as the initial state of the

environment (which is also defined through an information model), it is possible to

automatically obtain an opposite activity for each one defined at the plan, The

following table presents an overview of the complete set of supported operations and

their compensation activities:

Table 1. Change Plan Compensation Activities

Original Operation Arguments Compensation

Install Unit Unit, container Uninstall Unit

Update Unit Unit, container Update Unit

Uninstall Unit Unit, container Install Unit

Start Unit Unit, container Stop Unit

Stop Unit Unit, container Start Unit

Add Resource Resource, properties, container Remove Resource

Remove Resource Resource, container Add Resource

Config Resource Resource, properties, container Config Resource

Config Unit Properties Unit, properties, container Config Unit Properties

Config Unit Bindings Unit, properties, container Config Unit Bindings

Plan compensation is supported at runtime by dynamically modifying the PVM

process after detecting an execution fault in an activity. This way, after the execution

finishes the environment will be restored to its initial state. In order to do so, the

compensation module first removes the pending nodes. After that, for each

successfully executed activity, an additional node is inserted in the process, following

a reverse order sequence. Each node will be associated with an executor configured as

the compensation operation for the one initially applied, both in its parameters and

type. Once the process has been completely modified, the execution will proceed by

invoking these new operations. Therefore, after the process is completely executed,

the environment will be restored to the state it had prior to the execution.

This approach, however, has two limitations. First, an executor compatible with

each compensation activity must be available in order for the compensation to work.

In the event that another error occurs during the compensation execution the process

will stop, as it is not possible to automatically restore the system. A notification will

be sent so that the IT personnel diagnose the unstable state.

5 Validation

After the system has been described in the previous sections, we will present the

steps taken to validate our proposal. In order to do so, we will detail the results of a

case study executed in a banking environment.

A banking company bases their business processes on a core banking system based

on SOA principles. This system supports every company service, including B2B

(business to business), bank staff services, end user internet banking and cashier

operations. The specific services, such as credit concession or account management,

are provided by components and services internally developed by the company

personnel, under the guidelines of the internal SOA infrastructure. Services are

deployed over the integration environment of the organization. The environment is

composed by four computing nodes, which are provisioned with application servers,

web servers, database systems, ESBs (Enterprise Service Buses) and BRMS

(Business Rule Management Systems).

Install DU
Prestamo

Install DU
WS-Reglas

Configure DU
WS-Reglas

Start DU
Prestamo

Start DU
WS-Reglas

Update DU
PBO

Configure DU
PBO

Stop DU
PBO

Remove Res
Prest. DDL

Add Res
NPrest. DDL

Conf. Res
PBO DS

Add Res
NPrest. DML

Start DU
PBO

BA C F GE

- B

D

- F- E- C - D- A

OK OK OK OK OK OK Error

A B

C

D

EF

G

H

I

J

Kl

M

Fig. 3 Case Study Compensation Example

In the first execution everything proceeds smoothly. All the activities are executed

correctly and an aggregated report is produced.

However, during the second execution the plan doesn’t proceed correctly because

the current state of the environment has changed from the moment where the plan was

generated: we purposely shut down one node simulating a hardware malfunction.

Because of that, the first executor that had to apply changes to this node could not

complete its task and therefore produced an error report. This happened during the

start of the WS-Reglas deployment unit. When the plan launcher detected this, it

invoked the compensation module to modify the plan process, inserting a

compensation node for each one successfully applied beforehand. The resulting

process is depicted in the previous figure. Compensation activities are represented

with the minus sign (-) followed by the character of the original node it compensates.

Once the updated process was completely executed, we verified that the

environment was, in fact, in the same state as before executing the plan. On top of

that, a report explaining that a grave error had occurred at the environment was

produced and passed to the administrator.

These two samples have shown that the change execution system perfomed as

expected in a normal situation and in the case of an error during the launching of the

change plan.

6 Conclusions

This paper has presented a complete solution for applying a set of related

deployment and configuration operations onto heterogeneous distributed

environments. The system seamlessly interacts between generic models and the

specific managed system. The solution also provides compensation capabilities for

any plan model provided. The abstraction at model level provides ten clear definitions

for the potential atomic changes, which has allowed automatically defining and

obtaining the compensation activity for each of them, enabling the automatic

generation of the compensation plan. This is also supported by the internal design of

the executor service, where the handling of executions as business processes provides

a fine control over the whole process.

This approach however has several limitations which should be discussed. It has

already been mentioned that in order for the compensation capabilities to be achieved

with this technique, the operations from each specific interpreter must be applied

atomically. This can prove to be a strong requirement on those agents, as it is heavily

dependent on the specific characteristics of each runtime platform.

The proposed service is also not designed to optimize the total execution time of

the provided deployment plans. As the model leaves some degree of flexibility to

interpret it, it would be possible for instance to maximize the parallel execution of its

activities, whenever possible. However, this increase in performance would impact

the compensation capabilities, as it would be considerably more complex and error-

prone that with the current, sequential approach. However, we intend to explore this

line of evolution for our future work.

In addition to that, whenever the system tries applying changes over an

environment which has been altered since the reasoning modules of the architecture

obtained the required solutions, the only potential response of this component is to

abort and restore the environment to the initial state. It would be interesting to see

whether for those situations the reported error in the execution was handled to a

diagnosing module, which could potentially determine the source of the error, and

modify on the fly the deployment plan in order for it to work correctly

Acknowledgments. The work presented here has been performed in the context of

the CENIT-ITECBAN project, under a grant from CDTI (Centro para el Desarrollo

Tecnológico Industrial) - MITYC (Ministerio de Industria, Comercio y Turismo de

España), and the INDRA company as main contractor.

References

1. ITIL: Information Technology Infrastructure Library (ITIL). Office of Government

Commerce (OGC), http://www.itil.co.uk/ (2006)

2. Deployment and Configuration of Component-based Distributed Applications, v4.0,

http://www.omg.org

3. Dubus, J., Merle, P.: Applying OMG D&C Specification and ECA Rules for Autonomous

Distributed Component-Based Systems. In: Models in Software Engineering, pp. 242-251.

Springer Berlin/Heidelberg (2007)

4. Keller, A., Hellerstein, J.L., Wolf, JL, Wu, K-, Krishnan, V. The CHAMPS system:

change management with planning and scheduling. Network Operations and Management

Symposium (NOMS 2004). Vol.1. pp: 395-408 (2004).

5. BPEL4WS V1.1 specification, http://www.ibm.com/

6. Cordeiro , W. L. D. C., Machado, G. S., Andreis, F. G., dos Santos, A. D., Both, C. B.,

Gaspary, L. P., Granville, L. Z., Bartolini, C., Trastour, D.: CHANGELEDGE: Change

design and planning in networked systems based on reuse of knowledge and automation.

Computer Networks Volume 53, Issue 16, pp. 2782-2799 (2009).

7. Web Services Business Process Execution Language Version 2.0, http://www.oasis-

open.org

8. Machado, G.S., Corediro, W. L. D. C., dos Santos, A.D., Wickboldt, J., Lunardi, R.C.,

Andreis, F.G., Both, C.B., Gaspary, L.P., Granville, L.Z., Trastour, D., Bartolini, C.:

Refined failure remediation for IT change management systems. IFIP/IEEE International

Symposium on Integrated Network Management (IM '09), pp 638 – 645 (2009).

9. Arshad, N., Heimbigner, D., Wolf, A.: Deployment and dynamic reconfiguration planning

for distributed software systems. Software Quality Journal 2007, Vol. 15, Issue 3, pp:265-

281 (2007).

10. Dumitraş, T., Roşu, D., Dan, A., Narasimhan P.: Ecotopia: An Ecological Framework for

Change Management in Distributed Systems. Architecting Dependable Systems IV,

Springer Berlin, pp 262-286 (2007).

11. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modelling

Framework, Second Edition, Addison-Wesley Professional. ISBN 978-0321331885

(2008).

12. OSGi Service Platform Release 4 Core Specification, http://www.osgi.org

13. The Process Virtual Machine (PVM), http://docs.jboss.com/jbpm/pvm/article/

http://www.itil.co.uk/
http://www.omg.org/
http://www.ibm.com/
http://www.osgi.org/
http://docs.jboss.com/jbpm/pvm/article/

