
Demo: Raphtory: Decentralised Streaming for Temporal Graphs
Benjamin A. Steer

�een Mary University of London
b.a.steer@qmul.ac.uk*

Felix Cuadrado
�een Mary University of London

felix.cuadrado@qmul.ac.uk

Richard G. Clegg
�een Mary University of London

r.clegg@qmul.ac.uk

ABSTRACT
Temporal graphs capture the relationships within data as they
develop throughout time. Intuition, therefore, suggests that this
model would �t naturally within a streaming architecture, where
new points of comparison can be inserted directly into the graph as
they arrive from the data source. However, the current state of the
art has yet to join these two concepts, supporting either temporal
analysis on static data or streaming into one-dimensional dynamic
graphs. To solve this problem we introduce Raphtory, a temporal
graph streaming platform, which maintains a full graph history
whilst e�ciently inserting new alterations.

ACM Reference format:
Benjamin A. Steer, Felix Cuadrado, and Richard G. Clegg. 2017. Demo:
Raphtory: Decentralised Streaming for Temporal Graphs. In Proceedings of
DEBS ’17, Barcelona, Spain, June 19-23, 2017, 2 pages.
DOI: 10.1145/3093742.3093903

1 INTRODUCTION
Temporal graphs provide a simple framework for exploring the
evolving interconnectivity of entities within a dataset. Works such
as [3] build explicitly around this structure, but do so on static data
sources, failing to explore the rich temporal dimension prevalent
in event-driven data streams. If such an input could be ingested it
would allow new data to be compared to the full history of related
entities in real time, invaluable for business use cases which require
swi� processing to keep the returned metrics applicable.

Real time graph streaming systems, such as [1] and [2], make use
of these data sources, but their approach is to batch changes, pro-
cessing static snapshots of the in-memory graph. �is snapsho�ing
reduces the granularity of temporal data to that of the snapshot win-
dow, requiring previous checkpoints to be reloaded into memory if
any historical comparison is to be made. Unfortunately, batching is
necessary as incoming data can frequently arrive out of sequence,
especially when there are multiple information streams or points
of ingestion. Deciding upon an execution order and what belongs
in the next snapshot can, therefore, o�en require feedback between
the ingestion and storage nodes, alongside some centralised arbiter.
Completing this level of synchronisation for each update, or even
a small batch, signi�cantly diminishes throughput, meaning large
batches are required for a system to remain viable. �is tightly cou-
ples the updating process with the snapsho�ing cycle and means
that updates may not be re�ected within the graph for a long time.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DEBS ’17, Barcelona, Spain
© 2017 Copyright held by the owner/author(s). 978-1-4503-5065-5/17/06. . . $15.00
DOI: 10.1145/3093742.3093903

Figure 1: Raphtory Architecture Overview

To solve these problems we introduce Raphtory, a graph stream-
ing system which maintains the full history of graph entities within
chronological lists, ordered by global timestamps. �is model re-
moves the need for centralised command ordering or batched up-
dating, as data can be inserted as soon as it arrives without a�ecting
throughput or generating race conditions.

2 ARCHITECTURE
�e initial motivation behind Raphtory was to create a platform
for real time analysis on temporal graphs, with an emphasis on
e�cient updating and high scalability. �e �rst step towards this
goal was to develop a data model and ingestion pipeline as the
foundation for later processing.

Raphtory’s architecture is built around the Actor Model, ingest-
ing incoming events into a pool of Graph Routers. �ese routers
convert the raw input into updates and direct them to the Graph
Partition Manager handling the a�ected entity. Graph Partition
Managers contain a subsection of the overall graph, maintaining
the full history of the vertices and edges they control by inserting
updates into the correct position as they arrive via the routing
pool. If an update a�ects multiple partitions, it is propagated by the
manager which initially received it; there is no need for centralised
supervision as all operations (addition, updating or removal) are
both additive and cumulative. �e overview for this can be seen in
Figure 1.

341

DEBS ’17, June 19-23, 2017, Barcelona, Spain Benjamin A. Steer, Felix Cuadrado, and Richard G. Clegg

2.1 Graph Router
Graph Routers are actors which independently a�ach to an input
stream. �is model allows the resources allocated for ingestion to
scale dynamically according to the level of incoming data. Each
ingested event is converted into a graph update via user de�ned
functions. �ese range from fundamentals such as de�ning what
type of input is converted into a vertex or edge add, to more ad-
vanced concepts such as establishing sliding windows of entity
decay. Maintaining a larger state for advanced execution may de-
mand more resources per actor, but will never require data to be
stored on disk.

When a command is generated, it is allocated a timestamp unique
across all Routers, Graph Partition Managers can then use this to
place the command correctly within the history of all a�ected
entities. Currently this is created via time �elds within the raw data,
under the assumption that the events were originally in the correct
order at the source. However, within future work it is intended
to create a method for generating unique orderings when this is
not present. Graph Routers operate a �re and forget protocol for
outgoing commands, routing via a provided partitioning algorithm.

2.2 Graph Partition Manager
Graph Partition Managers maintain a subsection of the in-memory
graph in the form of vertex and edge objects. �ese objects are con-
tained in a key value store and include the history of the entity and
its associated properties. An entity can be in one of two states at
any given time; ‘alive’ (present in the graph) or ‘dead’ (absent from
the graph). Adding an entity or updating its properties will insert
an ‘alive’ state within the history at the given timestamp, whilst a
removal will insert a ‘dead’ state. �e history itself is constructed
in the form of an ordered linked list, giving fast access to the most
recent update (the head) and constant insertion time within the tail
for delayed or out of sequence commands. �is is because, unlike
an array based data structure, only the objects either side of an
insertion are a�ected and there are no random waits for memory
block reallocation. Furthermore, this structure allows for fast exe-
cution of temporal graph mining algorithms, as no previous graph
states have to be loaded into memory.

Adding Vertices
When adding or updating a vertex, the key value store is checked

to see if an entity object exists for the given vertex ID. If it does,
the alteration will be inserted into the history and the properties
will be updated as required. If it does not, one will be initialised as
‘alive’ and placed within the store.

Adding Edges
An edge is managed primarily by the Graph Partition Manager

storing its source node. If the destination node is also stored on
this partition, the edge is considered ‘local’; if it is stored in another
partition the edge is considered ‘remote’. For local edges the entity
will be initialised or updated as ‘alive’, along with its adjoining
source and destination vertices (so there are no hanging edges). For
a remote edge, the Partition Manager will handle the source vertex
and the edge entity, forwarding the command to the destination ver-
tices Partition Manager to handle both this and a mirror copy of the

edge. �is can be seen in the edge between nodes 3 and 4 in Figure 1.

Removing Edges
�e removal of an edge follows the same process as adding or

updating, the di�erence being the new state will report the entity as
‘dead’ at the provided timestamp. An entity can still be initialised
as ‘dead’ when it has yet to be ‘alive’ within the graph, as the com-
mand adding the edge may be delayed and can be slo�ed into the
history when it arrives.

Removing Vertices
A vertex removal requires insertion of a ‘dead’ state into the

vertex and all associated edges. Unfortunately, as only existing
objects can be interacted with, there is the possibility here for race
conditions. Commands creating relevant edges may be delayed or
received a�er the vertex removal and, therefore, will not contain
this information within their history. For example, within Figure 1,
if the command which removed vertex 3 arrived before the com-
mand which added edge 3→4, then only edge 1→3 would exist
when the remove is executed. 1→3 would, therefore, be updated
with the new dead state, but 3→4 would miss this information, as
it is created a�er the remove is �nished.

To prevent this occurring, the ‘dead’ states contained in adjoining
vertices must be inserted into the edges history upon creation, so if
an edge misses the execution of a vertex removal the information
is still present. For local edges this information can be extracted
from the source and destination objects. Remote edges, however,
require the Graph Partition Manager storing the destination vertex
to return its ‘dead’ states via an update command a�er handling its
half of the edge creation. Whilst this may seem a heavy bo�leneck
for the system, this is a one time occurrence at the initialisation of
the edge. Furthermore, the response requires no locking or waiting;
it can be processed asynchronously at any point in the future.

3 CONCLUSION
In this paper we present a model for ingesting event based data
streams into a distributed temporal graph, without the need for
batched updates or centralised execution ordering. As a continu-
ation of this work we plan to investigate a computational model
which can execute concurrently with graph updates. We also intend
to explore ways of alleviating the continuously increasing memory
footprint of the current model, along with adaptive partitioning
algorithms to retain data locality as the graph evolves.

REFERENCES
[1] R. Cheng et al. Kineograph: taking the pulse of a fast-changing and connected

world. In Proceedings Eurosys, pages 85–98. ACM, 2012.
[2] A. Dubey et al. Weaver: a high-performance, transactional graph database based

on re�nable timestamps. Proceedings of the VLDB Endowment, 9(11):852–863, 2016.
[3] Y. Miao et al. Immortalgraph: A system for storage and analysis of temporal

graphs. Transactions on Storage (TOS), 11(3):14, 2015.

342

