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Abstract 
The evolution of any software product over its lifetime is 
unavoidable, caused both by bugs to be fixed and by new 
requirements appearing in the later stages of the 
product’s lifecycle. Traditional development and 
architecture paradigms have proven to be not suited for 
these continual changes, resulting in large maintenance 
costs. This has caused the rise of approaches such as 
Service Oriented Architectures (SOA), based on loosely 
coupled, interoperable services, aiming to address these 
issues. This paper describes a case study of the evolution 
of an existing legacy system towards a more maintainable 
SOA. The proposed process includes the recovery of the 
legacy system architecture, as a first step to define the 
specific evolution plan to be executed and validated. The 
case study has been applied to a medical imaging system, 
evolving it into a service model. 
Keywords: Software evolution, architecture recovery, 
services platform, SOA, OSGi. 
 
1. Introduction 

 
Costs in software development are primarily 

dominated by software maintenance issues. If in the 
seventies, estimation studies claimed that maintenance 
consumed 67 % of total software costs [1], nowadays 
some authors are already talking about 90% [2]. Other 
studies have shown that approximately 50% of the time is 
spent understanding the code [3]. Solving bugs, 
improving performance, applying security patches or 
adding new features are part of the everyday jobs of a 
software developer. 

The ISO 9126 [4] standard defines maintainability as 
the capability of the software product to be modified, 
including corrections, improvements or adaptation of the 
software to changes in environment, and in requirements 
and functional specifications. Besides that, ISO 9126 
proposed a division of maintainability in the following 
characteristics: analyzability, changeability, stability, and 
testability. These features can rely on quality indicators 
such as coupling, cohesion, and complexity [5]. In this 
paper we focus on coupling as one the main indicators of 
maintainability.  

Loose coupling is one of the primary benefits of 
service-oriented systems. SOA (Service-Oriented 
Architecture) allows breaking the system down into 
independent modules (i.e. the services) that interact with 

each other by means of well defined interfaces [6]. All in 
all, SOA systems exhibit low coupling and thus are more 
maintainable. Therefore, one way to achieve 
maintainability of a legacy system is to evolve towards a 
services platform. 

The contribution of this paper is twofold: first, we 
present a evolution process that includes an architecture 
recovery step before starting the iterative evolution phase 
to SOA. Second, we provide practical information on how 
we have applied this process to a case study. The case 
study focuses on the evolution of an existing medical 
imaging system. This system was initially developed by 
Ibermatica1 and later made available as open source. 
 
2. Evolution to SOA Process 

 
Our process for evolving legacy systems follows a 

white-box approach, i.e. it relies on modifying the legacy 
code. The main characteristics of the process are its 
flexibility, as it can be applied to different cases; and the 
integration of architecture recovery techniques into the 
process. The process is composed of three clearly defined 
activities: first, architecture recovery of the legacy system 
is carried out, documenting it properly. Second, an 
evolution plan is defined, detailing the candidate 
architecture and the necessary evolution steps. Third, the 
plan is executed, that is, the system goes forward to SOA.  
 
2.1. Architecture Recovery 

 
The goal of the first activity in the recovery process is 

to properly document the legacy system. The information 
thus obtained will be the basis for the evolution plan. 
Apart from the high-level knowledge acquired over the 
process (taken from requirements or design documents), 
the low-level familiarization with the system (source 
code, configuration options, users’ manual) will speed up 
the execution of the evolution cycles. Although this initial 
process may require some additional effort at the start, it 
will pay off in the latter stages of the evolution.  

                                                
1 The case study described here has been performed in the 
context of the European project ITEA-SERIOUS (project 
number 04032), under grant by Spanish Ministerio de 
Industria, Turismo y Comercio in the PROFIT program 
(ref FIT-34000-2007-33). 



The process does not rely on any specific tool, as the 
selection of one or another depends on the specifics of the 
system (amount of available documentation, size, 
technologies, etc.). 
 
2.2. Evolution Planning 

 
This activity produces a detailed evolution plan for the 

system, and the rationale for the decisions and 
intermediate steps. It is composed of four sequential 
phases: architecture selection, iterations definition, 
iterations planning and feasibility check. 

• Architecture selection: The objective of the phase is 
to choose the future architecture of the system. This is one 
of the key decisions in the evolution process, as 
architecture plays a fundamental role in the quality of the 
system. Several candidate architectures and technologies 
should be evaluated for their suitability to the needs of the 
system, and compared against the recovered legacy 
architecture, so advantages and disadvantages of changes 
can be evaluated. 

• Define evolution cycles: The objective of this phase 
is to define the different evolution cycles the product 
needs to iterate in order to satisfy the goals driving the 
evolution process. The results from the architecture 
recovery process will serve as additional input for 
defining cycles suited to the system. 

• Plan evolution cycles: Once the different evolution 
cycles have been defined, it is necessary to develop a plan 
for its implementation. This phase analyses the 
dependencies between the cycles, scheduling their 
execution. 

• Preliminary feasibility check: Once a plan for the 
evolution is available, each step should be quickly tested, 
to verify its feasibility. This allows the early detection of 
severe problems before the actual refactorings start. If the 
validations do not succeed it will be necessary to step 
back to the “define cycles” phase (or in extreme case back 
to the architecture selection), in order to address these 
problems. When these tests succeed the process will 
continue to the execution of the defined cycles. 
 
2.3. Evolution Execution 

 
The definition process has produced a detailed 

evolution plan, describing every step of the process and 
providing a schedule for their execution. With this 
document and the original system as inputs, the system 
will be refactored to achieve the initial objectives of the 
process. The actual nature of this process will vary from 
one case to another. Depending on the requirements, the 
phases can be executed either sequentially or in parallel. 
Quality can also be evaluated between each cycle in order 
to track the evolution of quality over the process. 
 

3. A Case Study in Evolution to SOA 
 
The process has been applied to a case study, where an 

existing product has been evolved to accomplish several 
goals. The analysed product is a Java-based medical 
imaging system, of small size (about 10k lines of code). 
The product is currently being used in several Spanish 
hospitals. It allows visualizing several medical images at 
the same time and applying them image transformations. 
  

 
Figure 1. The Medical Imaging System GUI 

 
The main objectives achieved in this case study are: 
• Improving the usability and performance of the 

product. Most complaints from end users refer to the user 
interface. The overall look & feel of the application 
should be improved and it should allow a higher degree 
of customization. Application responsiveness is another 
important factor affecting the user’s experience, and can 
be addressed by improving system performance. 

• Improving the maintainability and interoperability 
of the system. The original design of the product did not 
take into account the future needs. It should be refactored 
to ease future evolution steps and ease its integration with 
other healthcare systems.  

In the following, we describe our experiences in the 
case study, highlighting the most valuable lessons learnt 
at each stage. 
 
3.1. Architecture Recovery 

 
The recovery process executed was based on QAR 

(QUE-es Architecture Recovery) [7]. QAR is a generic 
architecture recovery workflow that follows the extract-
abstract-present paradigm, and divides the extraction 
process into three activities (documentation analysis, 
static analysis and dynamic analysis). QAR offers a 
process framework for architecture recovery that can be 
tailored to the specifics of the application domain (see 
Figure 2). 



 
Figure 2. The QAR Workflow 

 
The only available documentation of this system was 

the user manual. We did not have access to design 
documents or to developers. These assets are usually very 
important for traditional recovery approaches. 

Architecture recovery processes can not be efficiently 
executed without the aid of tools, as these processes 
involve data gathering and visualization activities, which 
can be fully automated or at least semi-automated with 
human supervision. However, there are parts of the 
process, specially the abstraction phase, which require 
human reasoning and thus can not be performed by tools. 
Several recovery-enabling frameworks and tools have 
been developed to address this need; MOOSE [8] and 
Rigi [9] are some of the most widely used. Instead of 
these general recovery framework tools, we have chosen 
specific Java-based tools for each QAR stage. These tools 
are Jude [10], Omondo UML Studio [11] and Eclipse 
TPTP (Test and Performance Tools Platform) [12] [13]. 

Using these tools puts recovery processes at hand for 
staff that is not familiar with traditional methods and 
processes. The main limitation of the process is the 
scalability. It may need some adjustment for being 
applicable to larger projects. 
 
3.1.1. Information extraction. In the initial phase we 
analyzed the system documentation in order to obtain the 
conceptual model of the system. The main source of 
information for this process was the user manual, where 
the main use scenarios of the product were defined. We 
also analyzed in this process third party libraries used by 
the product (JAI [14] for advanced image 
transformations) and obtained basic domain knowledge 

(about the medical imaging standard DICOM [15] it 
conforms to) from external sources. 

After this analysis, we obtained the following 
products: a domain model of the analyzed application, a 
list of use cases covering the functionality provided by the 
tool and the required software infrastructure of the 
system. 

 
3.1.2. Static View Extraction. Here we used two freely 
available reverse-engineering tools to extract the static 
view of the system: Jude and Omondo UML Studio. 
These tools automatically analyze Java source code, 
generating UML class diagrams at class and package 
level, detecting inheritance and dependency relations 
between elements. In our initial evaluations both tools 
provided similar results in the Java code analysis. 
However, the extraction and diagram manipulation were 
faster with Jude. On the other hand, the functionality of 
Omondo was more complete, with the ability to generate 
package-level diagrams. In the end we used both in order 
to obtain more complete results. 

As a preliminary hypothesis for the system structure 
we considered each Java package as a module of the 
system. This partition simplified the analysis although it 
could be inconsistent with the recovered architecture. 
Following this approach we used reverse engineering 
tools to obtain one class diagram for each package 
neighborhood (constituted by the classes of the package 
and their immediate dependencies with the rest of the 
system), plus one global class diagram of the whole 
system and an inter-package dependencies diagram. This 
produced 19 diagrams.  

 
3.1.3. Dynamic View Extraction. In this process we used 
a profiling tool for extracting runtime information. First 
we defined some representative scenarios to be executed. 
These scenarios were derived from the use cases obtained 
in the first step, trying to reflect the typical interactions 
between the user and the system. Scenarios were also 
designed with two additional criteria: maximize system 
coverage, and minimize common execution sequences 
between scenarios.  The main scenarios we defined are: 

• Application startup, for identifying the sequence of 
participating classes in the application launch. 

• Image transformation, which represents a typical 
sequence of operations performed with the application: 
with the application started we loaded an image, applied a 
set of transformations (sharpen image, zoom and scroll) 
for observing the new image better and finally, stored the 
modified image on the hard drive. 

The tool selected for the dynamic analysis was the 
Java Profiler of TPTP 4.2, a set of Eclipse extensions for 
systems’ monitoring and profiling. TPTP captures three 
types of run time information: method invocation, 
execution time and number of instances in memory. The 
information can be presented in multiple ways, including 



forms and charts, UML sequence diagrams and graphical 
execution maps. The main limitation of TPTP is that 
although the raw data can be exported to XMI format that 
can be imported by other tools, doing the same with the 
generated UML diagrams are not possible. This constraint 
obliges to use the same tool for abstraction tasks over the 
dynamic view of the system. 

 
3.1.4. Abstraction. The abstraction process was 
performed by hand, transforming the diagrams in order to 
obtain a higher level architecture. The process consisted 
of a series of filtering actions, applied sequentially until a 
higher level view of the system was obtained. 

The analysis was executed combining both the static 
and dynamic system views. On the positive side, working 
with both views under the same environment greatly 
simplified the task; however, it was still necessary to 
manually synchronize abstractions performed at both 
levels.  

Regarding the dynamic view, the sequence diagrams 
were simplified along this process by applying two 
different techniques [16]: horizontal abstraction (fusion of 
several lifelines into one) and vertical abstraction 
(collapsing method calls in order to hide its inner 
sequence of interactions). Both techniques are natively 
supported by TPTP.  

The next step aimed to detect the fundamental classes 
of the system. The objective was to identify the most 
important classes of the system, according to several 
criteria. The analysis was simultaneously performed at 
two levels: analyzing each package neighborhood and 
analyzing the whole system with the inter-package 
dependencies. The results from this step discarded 119 
classes from the system architecture.  

 

 
Figure 3.  Recovered Architecture Diagram 

From the beginning phases of the abstraction process it 
became clear that the initial hypothesis, one module per 
Java package, was not a good representation of the 

underlying architecture. Coupling between packages is 
high and there are several dependency cycles between 
them. Because of that, the final step restructured classes 
and packages into coarser-grained high level modules. 
The main criterion for that separation was twofold: clearly 
separating the main areas of functionality of the system, 
and isolating dependencies on the software infrastructure. 
After this reasoning we defined three modules: the user 
interface, the image transformations functionality, and the 
image i/o access. User interface is composed by three sub-
modules (Icons, MainGUI, Viewer) due to its complexity. 
Figure 3 shows the resulting diagram after the abstraction 
process.  
 
3.2. Evolution Definition 

 
The four phases of this sub process produced a detailed 

evolution plan for the system which accomplishes the 
goals of the evolution process. The plan was also adapted 
to the singularities of the system, reflected in the 
recovered architecture. 
 
3.2.1. Architecture selection. We were looking for a new 
architecture which supports an increased degree of 
maintainability and interoperability for the system. These 
are general good design principles, which are explicitly 
supported by Service-Oriented Architectures [17]. In the 
Java context, the OSGi [18] specification provides a 
functional framework based on these principles. 

The OSGi service platform is a specification 
developed by the OSGi Alliance, which defines a 
framework for service execution, plus some basic services 
and facilities for service lifecycle management, including 
a registry of services and locally available service 
implementations.  

These characteristics have lead us to select OSGi as 
the enabling technology for our future architecture, which 
will be composed of a set of loosely coupled dynamic 
components integrating seamlessly via services. Thus, 
moving the system architecture to the OSGi service 
platform is a requisite to evolve the system into a full-
fledged SOA. 

The selection of this service execution framework and 
the evolution of the medical imaging system towards its 
usage would provide the following advantages: 

• Improved maintainability of the system and the 
architecture, as being loosely coupled services, the 
interrelations are governed by the services registry. 
Relations can be changed at runtime and services can be 
changed to interact remotely in a transparent manner. 

• Improved configurability of the system, as services 
can be combined in different ways and lead to different 
runtime configurations. 

• Improved sustituibility of parts of the system, as the 
interactions between services allow for the replacement of 
service implementations. In some cases, complete 



subsystems can be replaced by new libraries or third party 
provided services. 

• Improved service management capabilities, as the 
definition of isolated services on top of the OSGi service 
platform allows for the (remote) management of each of 
them. This opens a wide range of possibilities, where the 
company providing the software could face a change of 
business model and provide (parts of) the service instead. 
 
3.2.2. Definition of the steps. With our objectives in 
mind we defined the required evolution cycles to achieve 
the desired targets. This phase produced these four cycles, 
based on the goals and the future architecture: 

• Migrate the product to the selected architecture, the 
OSGi Service Platform. In this case study we have chosen 
Eclipse Equinox (OSGi R4 implementation). 

• Refactor the product as a set of components 
interacting through services. 

• Develop a substitute user interface for the system, 
based on RCP (Rich Client Platform). RCP is a 
framework built over Eclipse which allows rapid 
development of client applications, allowing for high 
customizability and integration with different tools [19]. 
The successful Eclipse IDE itself has been built using this 
model. It also should improve the reliability because of 
the use of SWT, a low-level graphic widget toolkit 
substituting the standard Java Swing, which is slower as it 
is emulated over the virtual machine instead of invoking 
system calls. 

• Open up the system to interoperability with PACS 
(Picture Archiving and Communication Systems). The 
current version of the product works with locally-stored 
images, while the new SOA migrated system would be 
able to interact with remote image servers, and also be 
able to be included into a medical workflow by means of 
the publication of the service interface using Web 
Services. 
 
3.2.3. Planning of the steps. In this step we planned a 
workflow for the execution of the cycles. The first step 
has to be the migration of the architecture to the OSGi 
service model, which is mandatory before any of the other 
steps are executed. The second step must also be the 
refactoring of the legacy components into OSGi 
components and services, which will greatly simplify the 
other two cycles. The final two cycles can be executed in 
any order, or even be executed in parallel, thanks to the 
refactoring done in the second step. 

 
3.2.4. Feasibility check of the steps. Some quick tests of 
the interoperability of the technologies involved were 
made in order to make a preliminary validation of the 
defined process. To do that, we have performed unit-
testing on the OSGi components (bundles) using JUnit. 
These tests did not expose any problems, and the 

experience obtained with this effort helped in the 
evolution execution stage. 
 
3.3. Evolution Execution 

 
This step consists of refactoring the legacy product 

into a set of loosely coupled services, deployed as 
bundles. The documentation obtained from the 
architecture recovery process is really helpful here in 
order to separate the functionality of the legacy code, 
easing the refactoring. The identified modules in the 
recovery are: graphical user interface (the most part of the 
application), the image transformation component, tied to 
the JAI library, and the image access/storage 
functionality. For each functional module we defined a 
generic service, with a specific implementation in the 
existing code base. This allows the task of extending the 
application by substituting one service implementation for 
another (i.e. local folder access for remote server access).  

For decoupling the system components we have 
chosen the whiteboard pattern [20]. This pattern is an 
example of inversion of control (IoC), that is: “do not call 
us, we will call you”. The service providers register 
listeners in the OSGi Service Registry. When a consumer 
needs that service, looks for it in the Service Registry and 
binds it (see Figure 4). This way presentation is 
completely decoupled from underlying logic. 

The last step performed has been the duplication of 
GUI by offering two possibilities for the underlying 
platform: Swing and RCP. The functionality of the system 
has not been changed, but the usage characteristics do, as 
each of the libraries provides different look and feel and 
performance figures. By using the whiteboard pattern in 
runtime –which is allowed by the OSGi platform- the 
selection of GUI service implementation can be changed 
during execution, so the goal of adaptation to the user has 
also been met. 

 

 
 

Figure 4. Whiteboard Actors in the OSGi Framework 
 
 
4. Conclusions 

 
This article has presented a case study for the 

evolution of software systems with the particularity of 
being poorly or scarcely documented. It has been carried 
out to a medium-sized legacy system with satisfactory 
results, and has focused on the evolution of an existing 
medical imaging system to adopt SOA principles. The 



case study description provides valuable contributions for 
practitioners, who will find useful guidelines and 
recommendations on how to use tools such as Eclipse 
TPTP or Omondo UML to enact evolution processes that 
require architecture recovery tasks.  In general, the results 
obtained with these tools have been acceptable, but they 
have some limitations that should be addressed to 
improve the productivity of software evolution processes, 
e.g. it is not possible to export gathered data to a common 
format for data exchange between tools and they lack 
facilities for the programmatic manipulation of data, 
which could be needed when working with large systems. 

Our case study includes an architecture recovery stage, 
prior to the planning and execution of the evolution 
cycles. Architecture recovery saves work for subsequent 
tasks. Furthermore, in some cases it is simply a must, 
because the system is too complex to be understood just 
by visual code inspection. Once the architecture of the 
system is recovered, we recommend applying a series of 
refactoring iterations to evolve the system. This process 
has proven to be suitable for medium-sized systems, but it 
might not be the best option for very large systems. 
Instead, creating black-box wrappings around the product 
might be the only real alternative. In addition to the 
process description it is interesting to point out that the 
selected architecture for the case study, the OSGi Service 
Platform, has proven to be a natural candidate for 
evolving legacy Java applications to service-oriented 
systems. In addition, the OSGi platform leverages 
extensibility mechanisms over a lightweight core and 
provides seamless interoperability with other SOA 
technologies such as Web Services. 
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