
A Case Study on Software Evolution towards Service-Oriented Architecture

Félix Cuadrado, Boni García, Juan C. Dueñas, Hugo A. Parada
Departamento de Ingeniería de Sistemas Telemáticos, Universidad Politécnica de Madrid

 {fcuadrado,bgarcia,jcduenas,hparada}@dit.upm.es

Abstract
The evolution of any software product over its lifetime is
unavoidable, caused both by bugs to be fixed and by new
requirements appearing in the later stages of the
product’s lifecycle. Traditional development and
architecture paradigms have proven to be not suited for
these continual changes, resulting in large maintenance
costs. This has caused the rise of approaches such as
Service Oriented Architectures (SOA), based on loosely
coupled, interoperable services, aiming to address these
issues. This paper describes a case study of the evolution
of an existing legacy system towards a more maintainable
SOA. The proposed process includes the recovery of the
legacy system architecture, as a first step to define the
specific evolution plan to be executed and validated. The
case study has been applied to a medical imaging system,
evolving it into a service model.
Keywords: Software evolution, architecture recovery,
services platform, SOA, OSGi.

1. Introduction

Costs in software development are primarily

dominated by software maintenance issues. If in the
seventies, estimation studies claimed that maintenance
consumed 67 % of total software costs [1], nowadays
some authors are already talking about 90% [2]. Other
studies have shown that approximately 50% of the time is
spent understanding the code [3]. Solving bugs,
improving performance, applying security patches or
adding new features are part of the everyday jobs of a
software developer.

The ISO 9126 [4] standard defines maintainability as
the capability of the software product to be modified,
including corrections, improvements or adaptation of the
software to changes in environment, and in requirements
and functional specifications. Besides that, ISO 9126
proposed a division of maintainability in the following
characteristics: analyzability, changeability, stability, and
testability. These features can rely on quality indicators
such as coupling, cohesion, and complexity [5]. In this
paper we focus on coupling as one the main indicators of
maintainability.

Loose coupling is one of the primary benefits of
service-oriented systems. SOA (Service-Oriented
Architecture) allows breaking the system down into
independent modules (i.e. the services) that interact with

each other by means of well defined interfaces [6]. All in
all, SOA systems exhibit low coupling and thus are more
maintainable. Therefore, one way to achieve
maintainability of a legacy system is to evolve towards a
services platform.

The contribution of this paper is twofold: first, we
present a evolution process that includes an architecture
recovery step before starting the iterative evolution phase
to SOA. Second, we provide practical information on how
we have applied this process to a case study. The case
study focuses on the evolution of an existing medical
imaging system. This system was initially developed by
Ibermatica1 and later made available as open source.

2. Evolution to SOA Process

Our process for evolving legacy systems follows a

white-box approach, i.e. it relies on modifying the legacy
code. The main characteristics of the process are its
flexibility, as it can be applied to different cases; and the
integration of architecture recovery techniques into the
process. The process is composed of three clearly defined
activities: first, architecture recovery of the legacy system
is carried out, documenting it properly. Second, an
evolution plan is defined, detailing the candidate
architecture and the necessary evolution steps. Third, the
plan is executed, that is, the system goes forward to SOA.

2.1. Architecture Recovery

The goal of the first activity in the recovery process is

to properly document the legacy system. The information
thus obtained will be the basis for the evolution plan.
Apart from the high-level knowledge acquired over the
process (taken from requirements or design documents),
the low-level familiarization with the system (source
code, configuration options, users’ manual) will speed up
the execution of the evolution cycles. Although this initial
process may require some additional effort at the start, it
will pay off in the latter stages of the evolution.

1 The case study described here has been performed in the
context of the European project ITEA-SERIOUS (project
number 04032), under grant by Spanish Ministerio de
Industria, Turismo y Comercio in the PROFIT program
(ref FIT-34000-2007-33).

The process does not rely on any specific tool, as the
selection of one or another depends on the specifics of the
system (amount of available documentation, size,
technologies, etc.).

2.2. Evolution Planning

This activity produces a detailed evolution plan for the

system, and the rationale for the decisions and
intermediate steps. It is composed of four sequential
phases: architecture selection, iterations definition,
iterations planning and feasibility check.

• Architecture selection: The objective of the phase is
to choose the future architecture of the system. This is one
of the key decisions in the evolution process, as
architecture plays a fundamental role in the quality of the
system. Several candidate architectures and technologies
should be evaluated for their suitability to the needs of the
system, and compared against the recovered legacy
architecture, so advantages and disadvantages of changes
can be evaluated.

• Define evolution cycles: The objective of this phase
is to define the different evolution cycles the product
needs to iterate in order to satisfy the goals driving the
evolution process. The results from the architecture
recovery process will serve as additional input for
defining cycles suited to the system.

• Plan evolution cycles: Once the different evolution
cycles have been defined, it is necessary to develop a plan
for its implementation. This phase analyses the
dependencies between the cycles, scheduling their
execution.

• Preliminary feasibility check: Once a plan for the
evolution is available, each step should be quickly tested,
to verify its feasibility. This allows the early detection of
severe problems before the actual refactorings start. If the
validations do not succeed it will be necessary to step
back to the “define cycles” phase (or in extreme case back
to the architecture selection), in order to address these
problems. When these tests succeed the process will
continue to the execution of the defined cycles.

2.3. Evolution Execution

The definition process has produced a detailed

evolution plan, describing every step of the process and
providing a schedule for their execution. With this
document and the original system as inputs, the system
will be refactored to achieve the initial objectives of the
process. The actual nature of this process will vary from
one case to another. Depending on the requirements, the
phases can be executed either sequentially or in parallel.
Quality can also be evaluated between each cycle in order
to track the evolution of quality over the process.

3. A Case Study in Evolution to SOA

The process has been applied to a case study, where an

existing product has been evolved to accomplish several
goals. The analysed product is a Java-based medical
imaging system, of small size (about 10k lines of code).
The product is currently being used in several Spanish
hospitals. It allows visualizing several medical images at
the same time and applying them image transformations.

Figure 1. The Medical Imaging System GUI

The main objectives achieved in this case study are:
• Improving the usability and performance of the

product. Most complaints from end users refer to the user
interface. The overall look & feel of the application
should be improved and it should allow a higher degree
of customization. Application responsiveness is another
important factor affecting the user’s experience, and can
be addressed by improving system performance.

• Improving the maintainability and interoperability
of the system. The original design of the product did not
take into account the future needs. It should be refactored
to ease future evolution steps and ease its integration with
other healthcare systems.

In the following, we describe our experiences in the
case study, highlighting the most valuable lessons learnt
at each stage.

3.1. Architecture Recovery

The recovery process executed was based on QAR

(QUE-es Architecture Recovery) [7]. QAR is a generic
architecture recovery workflow that follows the extract-
abstract-present paradigm, and divides the extraction
process into three activities (documentation analysis,
static analysis and dynamic analysis). QAR offers a
process framework for architecture recovery that can be
tailored to the specifics of the application domain (see
Figure 2).

Figure 2. The QAR Workflow

The only available documentation of this system was

the user manual. We did not have access to design
documents or to developers. These assets are usually very
important for traditional recovery approaches.

Architecture recovery processes can not be efficiently
executed without the aid of tools, as these processes
involve data gathering and visualization activities, which
can be fully automated or at least semi-automated with
human supervision. However, there are parts of the
process, specially the abstraction phase, which require
human reasoning and thus can not be performed by tools.
Several recovery-enabling frameworks and tools have
been developed to address this need; MOOSE [8] and
Rigi [9] are some of the most widely used. Instead of
these general recovery framework tools, we have chosen
specific Java-based tools for each QAR stage. These tools
are Jude [10], Omondo UML Studio [11] and Eclipse
TPTP (Test and Performance Tools Platform) [12] [13].

Using these tools puts recovery processes at hand for
staff that is not familiar with traditional methods and
processes. The main limitation of the process is the
scalability. It may need some adjustment for being
applicable to larger projects.

3.1.1. Information extraction. In the initial phase we
analyzed the system documentation in order to obtain the
conceptual model of the system. The main source of
information for this process was the user manual, where
the main use scenarios of the product were defined. We
also analyzed in this process third party libraries used by
the product (JAI [14] for advanced image
transformations) and obtained basic domain knowledge

(about the medical imaging standard DICOM [15] it
conforms to) from external sources.

After this analysis, we obtained the following
products: a domain model of the analyzed application, a
list of use cases covering the functionality provided by the
tool and the required software infrastructure of the
system.

3.1.2. Static View Extraction. Here we used two freely
available reverse-engineering tools to extract the static
view of the system: Jude and Omondo UML Studio.
These tools automatically analyze Java source code,
generating UML class diagrams at class and package
level, detecting inheritance and dependency relations
between elements. In our initial evaluations both tools
provided similar results in the Java code analysis.
However, the extraction and diagram manipulation were
faster with Jude. On the other hand, the functionality of
Omondo was more complete, with the ability to generate
package-level diagrams. In the end we used both in order
to obtain more complete results.

As a preliminary hypothesis for the system structure
we considered each Java package as a module of the
system. This partition simplified the analysis although it
could be inconsistent with the recovered architecture.
Following this approach we used reverse engineering
tools to obtain one class diagram for each package
neighborhood (constituted by the classes of the package
and their immediate dependencies with the rest of the
system), plus one global class diagram of the whole
system and an inter-package dependencies diagram. This
produced 19 diagrams.

3.1.3. Dynamic View Extraction. In this process we used
a profiling tool for extracting runtime information. First
we defined some representative scenarios to be executed.
These scenarios were derived from the use cases obtained
in the first step, trying to reflect the typical interactions
between the user and the system. Scenarios were also
designed with two additional criteria: maximize system
coverage, and minimize common execution sequences
between scenarios. The main scenarios we defined are:

• Application startup, for identifying the sequence of
participating classes in the application launch.

• Image transformation, which represents a typical
sequence of operations performed with the application:
with the application started we loaded an image, applied a
set of transformations (sharpen image, zoom and scroll)
for observing the new image better and finally, stored the
modified image on the hard drive.

The tool selected for the dynamic analysis was the
Java Profiler of TPTP 4.2, a set of Eclipse extensions for
systems’ monitoring and profiling. TPTP captures three
types of run time information: method invocation,
execution time and number of instances in memory. The
information can be presented in multiple ways, including

forms and charts, UML sequence diagrams and graphical
execution maps. The main limitation of TPTP is that
although the raw data can be exported to XMI format that
can be imported by other tools, doing the same with the
generated UML diagrams are not possible. This constraint
obliges to use the same tool for abstraction tasks over the
dynamic view of the system.

3.1.4. Abstraction. The abstraction process was
performed by hand, transforming the diagrams in order to
obtain a higher level architecture. The process consisted
of a series of filtering actions, applied sequentially until a
higher level view of the system was obtained.

The analysis was executed combining both the static
and dynamic system views. On the positive side, working
with both views under the same environment greatly
simplified the task; however, it was still necessary to
manually synchronize abstractions performed at both
levels.

Regarding the dynamic view, the sequence diagrams
were simplified along this process by applying two
different techniques [16]: horizontal abstraction (fusion of
several lifelines into one) and vertical abstraction
(collapsing method calls in order to hide its inner
sequence of interactions). Both techniques are natively
supported by TPTP.

The next step aimed to detect the fundamental classes
of the system. The objective was to identify the most
important classes of the system, according to several
criteria. The analysis was simultaneously performed at
two levels: analyzing each package neighborhood and
analyzing the whole system with the inter-package
dependencies. The results from this step discarded 119
classes from the system architecture.

Figure 3. Recovered Architecture Diagram

From the beginning phases of the abstraction process it
became clear that the initial hypothesis, one module per
Java package, was not a good representation of the

underlying architecture. Coupling between packages is
high and there are several dependency cycles between
them. Because of that, the final step restructured classes
and packages into coarser-grained high level modules.
The main criterion for that separation was twofold: clearly
separating the main areas of functionality of the system,
and isolating dependencies on the software infrastructure.
After this reasoning we defined three modules: the user
interface, the image transformations functionality, and the
image i/o access. User interface is composed by three sub-
modules (Icons, MainGUI, Viewer) due to its complexity.
Figure 3 shows the resulting diagram after the abstraction
process.

3.2. Evolution Definition

The four phases of this sub process produced a detailed

evolution plan for the system which accomplishes the
goals of the evolution process. The plan was also adapted
to the singularities of the system, reflected in the
recovered architecture.

3.2.1. Architecture selection. We were looking for a new
architecture which supports an increased degree of
maintainability and interoperability for the system. These
are general good design principles, which are explicitly
supported by Service-Oriented Architectures [17]. In the
Java context, the OSGi [18] specification provides a
functional framework based on these principles.

The OSGi service platform is a specification
developed by the OSGi Alliance, which defines a
framework for service execution, plus some basic services
and facilities for service lifecycle management, including
a registry of services and locally available service
implementations.

These characteristics have lead us to select OSGi as
the enabling technology for our future architecture, which
will be composed of a set of loosely coupled dynamic
components integrating seamlessly via services. Thus,
moving the system architecture to the OSGi service
platform is a requisite to evolve the system into a full-
fledged SOA.

The selection of this service execution framework and
the evolution of the medical imaging system towards its
usage would provide the following advantages:

• Improved maintainability of the system and the
architecture, as being loosely coupled services, the
interrelations are governed by the services registry.
Relations can be changed at runtime and services can be
changed to interact remotely in a transparent manner.

• Improved configurability of the system, as services
can be combined in different ways and lead to different
runtime configurations.

• Improved sustituibility of parts of the system, as the
interactions between services allow for the replacement of
service implementations. In some cases, complete

subsystems can be replaced by new libraries or third party
provided services.

• Improved service management capabilities, as the
definition of isolated services on top of the OSGi service
platform allows for the (remote) management of each of
them. This opens a wide range of possibilities, where the
company providing the software could face a change of
business model and provide (parts of) the service instead.

3.2.2. Definition of the steps. With our objectives in
mind we defined the required evolution cycles to achieve
the desired targets. This phase produced these four cycles,
based on the goals and the future architecture:

• Migrate the product to the selected architecture, the
OSGi Service Platform. In this case study we have chosen
Eclipse Equinox (OSGi R4 implementation).

• Refactor the product as a set of components
interacting through services.

• Develop a substitute user interface for the system,
based on RCP (Rich Client Platform). RCP is a
framework built over Eclipse which allows rapid
development of client applications, allowing for high
customizability and integration with different tools [19].
The successful Eclipse IDE itself has been built using this
model. It also should improve the reliability because of
the use of SWT, a low-level graphic widget toolkit
substituting the standard Java Swing, which is slower as it
is emulated over the virtual machine instead of invoking
system calls.

• Open up the system to interoperability with PACS
(Picture Archiving and Communication Systems). The
current version of the product works with locally-stored
images, while the new SOA migrated system would be
able to interact with remote image servers, and also be
able to be included into a medical workflow by means of
the publication of the service interface using Web
Services.

3.2.3. Planning of the steps. In this step we planned a
workflow for the execution of the cycles. The first step
has to be the migration of the architecture to the OSGi
service model, which is mandatory before any of the other
steps are executed. The second step must also be the
refactoring of the legacy components into OSGi
components and services, which will greatly simplify the
other two cycles. The final two cycles can be executed in
any order, or even be executed in parallel, thanks to the
refactoring done in the second step.

3.2.4. Feasibility check of the steps. Some quick tests of
the interoperability of the technologies involved were
made in order to make a preliminary validation of the
defined process. To do that, we have performed unit-
testing on the OSGi components (bundles) using JUnit.
These tests did not expose any problems, and the

experience obtained with this effort helped in the
evolution execution stage.

3.3. Evolution Execution

This step consists of refactoring the legacy product

into a set of loosely coupled services, deployed as
bundles. The documentation obtained from the
architecture recovery process is really helpful here in
order to separate the functionality of the legacy code,
easing the refactoring. The identified modules in the
recovery are: graphical user interface (the most part of the
application), the image transformation component, tied to
the JAI library, and the image access/storage
functionality. For each functional module we defined a
generic service, with a specific implementation in the
existing code base. This allows the task of extending the
application by substituting one service implementation for
another (i.e. local folder access for remote server access).

For decoupling the system components we have
chosen the whiteboard pattern [20]. This pattern is an
example of inversion of control (IoC), that is: “do not call
us, we will call you”. The service providers register
listeners in the OSGi Service Registry. When a consumer
needs that service, looks for it in the Service Registry and
binds it (see Figure 4). This way presentation is
completely decoupled from underlying logic.

The last step performed has been the duplication of
GUI by offering two possibilities for the underlying
platform: Swing and RCP. The functionality of the system
has not been changed, but the usage characteristics do, as
each of the libraries provides different look and feel and
performance figures. By using the whiteboard pattern in
runtime –which is allowed by the OSGi platform- the
selection of GUI service implementation can be changed
during execution, so the goal of adaptation to the user has
also been met.

Figure 4. Whiteboard Actors in the OSGi Framework

4. Conclusions

This article has presented a case study for the

evolution of software systems with the particularity of
being poorly or scarcely documented. It has been carried
out to a medium-sized legacy system with satisfactory
results, and has focused on the evolution of an existing
medical imaging system to adopt SOA principles. The

case study description provides valuable contributions for
practitioners, who will find useful guidelines and
recommendations on how to use tools such as Eclipse
TPTP or Omondo UML to enact evolution processes that
require architecture recovery tasks. In general, the results
obtained with these tools have been acceptable, but they
have some limitations that should be addressed to
improve the productivity of software evolution processes,
e.g. it is not possible to export gathered data to a common
format for data exchange between tools and they lack
facilities for the programmatic manipulation of data,
which could be needed when working with large systems.

Our case study includes an architecture recovery stage,
prior to the planning and execution of the evolution
cycles. Architecture recovery saves work for subsequent
tasks. Furthermore, in some cases it is simply a must,
because the system is too complex to be understood just
by visual code inspection. Once the architecture of the
system is recovered, we recommend applying a series of
refactoring iterations to evolve the system. This process
has proven to be suitable for medium-sized systems, but it
might not be the best option for very large systems.
Instead, creating black-box wrappings around the product
might be the only real alternative. In addition to the
process description it is interesting to point out that the
selected architecture for the case study, the OSGi Service
Platform, has proven to be a natural candidate for
evolving legacy Java applications to service-oriented
systems. In addition, the OSGi platform leverages
extensibility mechanisms over a lightweight core and
provides seamless interoperability with other SOA
technologies such as Web Services.

5. References

[1] Zelkowitz, M., Shaw, A. & Gannon, J. “Principles of
Software Engineering and Design”. Prentice-Hall, 1979.
[2] Erlikh, L. “Leveraging legacy system dollars for E-
business”. IEEE IT Pro, May/June 2000.
[3] Standish, T. “An essay on software reuse”. IEEE
Transactions on Software Engineering SE-10, 1984.
[4] ISO/IEC, “ISO/IEC 9126. Information technology -
Software product evaluation - Quality characteristics and
guidelines for their use” International Standards
Organization, Geneva 1991.
[5] Zou, Y., Kontogiannis, K. “Migration to Object
Oriented Platforms: A State Transformation Approach”
ICSM 2002.
[6] Pulier, E., Taylor, H. “Understanding Enterprise
SOA”. Manning, 2006.
[7] Arciniegas, J.L, “Contribution to Quality-driven
Evolutionary Software Development Process for Service-
Oriented Architecture”, Ph. D. Thesis, Polytechnic
University of Madrid, 2006.
[8] Ducasse, S., Lanza, M. & Tichelaar, S. “Moose: an
Extensible Language-Independent Environment for

Reengineering Object-Oriented Systems” Proceedings of
CoSET '00 (2nd International Symposium on
Constructing Software Engineering Tools), June 2000
[9] Kazman, R. O’Brien, L.and Verhoef, C,
Architecture Reconstruction Guidelines, 2nd Edition
(CMU/SEI-2002-TR-034). 2002.
[10] Jude (Java and UML Developer Environment), a
Java UML modeling tool. http://jude.change-vision.com
[11] Omondo Eclipse UML Studio, an Eclipse plug-in for
UML modelling. http://www.omondo.com
[12] Mehregani, A. & Mehregani D., “Gnireenigne
Esrever Fo Tra Enif Eft, or the Fine Art of Reverse
Engineering”, EclipseReview Magazine, Spring 2006
issue. Available at http://www.eclipsereview.org
[13] Eclipse TPTP (Test and Performance Tools Project),
an Eclipse Top-level project. http://www.eclipse.org/tptp
[14] JAI, Java Advanced Imaging API,
http://java.sun.com/javase/technologies/desktop/media/jai
[15] DICOM, Digital Imaging and Communication in
Medicine, a medical standard for patient image handling,
http://medical.nema.org/dicom/2007
[16] Krikhaar, R., Pennings, M. & Zonneveld, J.
“Employing use/cases and domain knowledge for
comprehending resource usage” In Proc. 3rd European
Conference on Software Maintenance and Reengineering
(CSMR), pages 14-21, March 1999.
[17] Erl, T. “Service-Oriented Architecture: Concepts,
Technology, and Design”. Upper Saddle River: Prentice
Hall, 2005.
[18] The OSGi Alliance, “About the OSGi platform”,
Technical Whitepaper, 2005.
[19] McAffer, Jeff., Lemieux, J.M. “Eclipse Rich Client
Platform: Designing, Coding, and Packaging Java
Applications”. Addison Wesley Professional, 2005.
[20] The OSGi Alliance, “Listeners Considered Harmful:
The Whiteboard Pattern”. Technical Whitepaper, 2004.

