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ABSTRACT

In this paper, we propose a novel self-learninggtiasngle-image super-resolution (SR) method, whiatoupled with

dual-tree complex wavelet transform (DTCWT) basedadsing to better recover high-resolution (HR) ioallimages.

Unlike previous methods, this self-learning bas@&d éproach enables us to reconstruct HR medicajém@rom a

single low-resolution (LR) image without extra treig on HR image datasets in advance. The reldtipadetween the
given image and its scaled down versions are mddedsng support vector regression with sparse epdird dictionary
learning, without explicitly assuming reoccurrenge self-similarity across image scales. In additiore perform

DTCWT based denoising to initialize the HR imagesach scale instead of simple bicubic interpotatMe evaluate
our method on a variety of medical images. Bothntjtetive and qualitative results show that thepmsed approach
outperforms bicubic interpolation and state-of-#resingle-image SR methods while effectively reingwnoise.

Keywords: Self-learning, sparse representation, super-résojudenoising, discrete wavelet transform, dueét
complex wavelet transform, medical imaging analyisigge processing

1. INTRODUCTION

Images with high resolution are desirable in mazaf applications, e.g., medical image analysiswislurveillance and
others™. However, image resolution and quality are oftienited by the hardware of the imaging acquisitigstem,
economic and health costs of the imaging procedund,the acquisition time. In particular, medicahging systems
acquire useful clinical details about the anatoinislysiological, functional and metabolic inforrnuat of patients using
various imaging modalities. Despite recent advantesmaging hardware development and imaging pmtoc
improvement, images are always obtained with degtaglality because of the inherent noise of theicaé@maging
system. Moreover, aforementioned health limitati(eg., ionizing radiation dose) and acquisitiondilimitations (e.g.,
Specific Absorption Rate limits) restrict the imagsolution, thus may reduce the visibility of Vipathological details
and compromise the diagnostic accuracy and prognosi

Instead of optimizing hardware settings and imagiaguences, image super-resolution (SR) providesdtamative
solution to improve the perceptual quality of medlicnages in terms of the spatial resolution enbarent. Essentially,
the goal of SR methods is to recover a high-reemiytHR) image from a single or multiple low-resttun (LR) images
2 Existing SR algorithms can be broadly categoriz#d interpolation based, reconstruction based, laarning based
methods®. Widely used interpolation based SR methods asstmaeimages are spatially smooth; however, this
assumption is usually inaccurate and results inrlpvemoothed edges with ringing and jagged artifatt.
Reconstruction based algorithms solve an inversblem by recovering the HR image by fusing multipR images’.
However, this approach is time-consuming and iridasiue to multiple LR images are requifedénd are numerically
limited to an upsampling factor of twoFor learning based methods, the mapping fundtemeen LR and HR images
(or their patches) is learned from a representatéteof training image pairs. Once the mapping tionds learned, it is
applied to a single testing image to achieve SRspide numerous learning based methbbishave claimed success for
single-image SR, these methods hinge on certairuatraf training data of LR and HR image pairs. @kset al?
proposed a self-similarity based single-image SEhotwusing a training dataset that is directly leghed from the LR
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input, by exploiting the patch redundancy amongdale and cross-scale images in an image pyramihtorce
constraints for recovering the unknown HR imag®bviously, the advantage of this method is thaté is no need to
construct an extrinsic large training dataset and; however, the abundance of self-similar gatéd questionable
for medical images. Yang and WaRgircumvented this problem by applying support weeegression (SVR) that
learned proper SR models from patches at diffdreage scales instead of searching for similar imaegehes. In their
study, sparse representation based feature eximastas applied to make their SR algorithm more adgatpnally
feasible for real applications that was originalhpposed for solving SR problem by Yang efaMore recently, Singh
and Ahuja'® added sub-band energy constraints for the seifasity based SR method, and Huang etaénriched the
dataset of self-similar patches by looking at theinsformed exemplars. Although these studiesltegbin promising
quantitative results, the SR methods were appliedetatively clean natural images. Therefore, thefggmances of
these methods for noisy medical images are stédlstjonable. Comprehensive reviews on various SRedstcan be
found elsewher&*?

In this paper, we propose an SVR based SR metlatdethrns a sparse representation as robust asxtie# features
across various down-sampled and denoised versimisg( dual-tree complex wavelet transform, i.e.,(WT) of a
single input LR image. Once the SVR has been tdaiwe can apply the best model to predict the f8Ralimage from a
single LR image. Compared to the previous publislkeadning based method$”, our approach does not require the
extra collection of HR training datasets. Compare@lasner et af and more recent work by Singh and Ahtflaour
method does not make assumption about self-simyilafiimage patches. In contrast to the SR metfiddsin which
SVR was originally applied, we use DTCWT to suppréise noise, and we hypothesize that our methathase
applicable for medical imaging applications, in @thinherent noises are inevitable due to the litmoites of the imaging
systems and acquisition protocols. Quantitative godlitative results show that our method outpenfrbicubic
interpolation and a self-learning based single-ien&& method while effectively removing noise.

2. METHODOLOGY

The overall framework of our method is summarizedown in the flowchart in Figure 1. Detailed stepour method
are described below.

DTCWT | Soft-Thresholding Denoising
Decomposition and Reconstruction
=R + Dictionary Learning | > SVR Learning | 5 Output
and Sparse Coding and Prediction HR Image
Npifc e Sobel Fitering Based
Image Patch Categorization

Figure 1: Flowchart of our approach including bietrning and prediction (For DTCWT, 4 layers of al@position was used).
2.1 Denoising and Pyramid Construction Using Dual-fee Complex Wavelet Transform (DTCWT)

The widely applied discrete wavelet transform, vahieplaces the infinitely oscillating sinusoidaklsafunction of the
Fourier transform with a set of locally oscillatibgsis functions, has some known limitations, ehift variance and
lack of directionality*>. The dual-tree complex wavelet transform (DTCWW@momes shortcomings of the DWT such
that it is nearly shift invariant and directionafiglective in two and higher dimensidisA detailed review of DTCWT
can be found if®. Instead of using bicubic interpolated down-samplersions of the original image to form the image
pyramid® we decomposed the original image using DTCWT eaxcth level was reconstructed using a soft-threaimld
schemé® to accomplish the denoising and image pyramidtcoason, which we used to train the SVR.

2.2 Feature Extraction Using Image Sparse Represation

Instead of working directly with pixels, a sparseaije representatiol was learned, representing robust and effective
features for SVR that can be formulated as an dpdition problem,

- ’ (1)

in which is the image patch (in our study we used a pah af 5 by 5), is the over-complete dictionary to be
learned, is the corresponding sparse coefficient vectad, ais the regularization term that balances the megatsity



(I,-norm term) and th&-norm based residual. According to Yang and W3rigetter SR performance can be achieved
by patch categorization, i.e., clustering patcims iow and high spatial frequency ones and leagrtireir dictionaries
separately. In our study, this has been done wsiBgbel filter, such that any patch including agesderived from the
Sobel filter is considered to have high spatiadfrency.

2.3 Support Vector Regression (SVR)

Finally, SVR'® which can fit the data in a high dimensional fieatspace without assuming the data distributicas w
applied to model the relationship between the irgp#rse coefficient vector and the associated SR pixel value. In
training, our SVR solves the following problem

MRS MR ()*+ &
w' ()% *+ &
& ,-&+,-&.10818&2&

in which$ denotes the associated target variable, i.e.| palge at the center of the patch considered énHR image.

' is the sparse image patch features in the tramsftbrspace. And is the norm vector of the nonlinear mapping
function to be learned, andis the tradeoff between the generalization andiiger and lower bounds of training errors
and subject to a threshold ef Gaussian kernels were used, and parameters wineated via cross-validation.
SVR model selection was achieved according to @ammim-error-rate classi cation rule based on Bayasikecision

theory®, and the trained best SVR model was applied tdigréhe nal SR output for a test LR input.

3. EXPERIMENTS AND RESULTS

Experiments have been performed on relatively cld&ankle and knee MRI images, from which LR inpwsre
synthesized with additive Gaussian nois@s §-&04& -&56 4 ) for the sake of simplicity. For these datasets, w
have ground truth of the HR images without noiseaddition, we also tested our approach on noiseupted LR
clinical datasets, i.e., LR cardiac and brain MRlages (Table 1), but for which no ground truth veasilable.
Evaluations have been done qualitatively by visosphection and quantitatively using peak signaidgse ratio (PSNR)
and mean squared error (MSE) that are defined as
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where MSE is calculated by
D8E/ o= @ I dH&J H28JK . M

The smaller the MSE, the closer the super-resalesdlt {) is to the ground truthH .

The performance of our method was compared witbrav@entional Gaussian filter + bicubic interpolatiand the self-
learning based SR approach (SLSR) proposédExample SR results are shown in Figure 2-5. PEGNRMSE results
of ankle and knee MRI images with HR ground trathg various additive noises3[( 0-& 04& -&56 4 ) and run 10
times for each noise level] are shown in Figure 6.

Table 1: Experimental data.

Data Original Resolution Input Resolution OutpusBlation Ground Truth
Ankle MRI 400x400 200x200 400x400 Yes
Knee MRI 400x400 200x200 400x400 Yes
Cardiac MRI 256x256 256x256 512x512 No
Brain MRI 256x256 256x256 512x512 No

4. CONCLUSION

In this study, we proposed a self-learning basedapoach, which coupled DTCWT based denoising W& on
image sparse representation based features. Batfitajye visual appearances and quantitative teshhve



demonstrated that our method can achieve promaimgje-image SR compared to conventional bicubierpolation
and recently developed SLSR methods.

LR Input Original HR GF + Bicubic SLSR Ours
Figure 2: First row from left to right: LR input,aBssian filtering (GF) and bicubic interpolatiosuk, SLSR result, and result of our
proposed method for the ankle MRI image. Second from left to right: Zoomed in version (red squaegion) of the LR input
(nearest neighbor interpolated for displaying psgjporiginal HR ground truth, GF + bicubic intelgi®mn result, SLSR result, and
result of our proposed method.
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Figure 3: Similar to Figure 2 but applied to the&rMRI image.
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Figure 4: Similar to Figure 2 but applied to thediac MRI image (note that there is no HR groundttrfor this case). Contrast has
been altered for the zoomed-in results for bettesgntation. Compared to GF + bicubic interpolatiod SLSR results, our method
obtained much less confounded structures that rtaipude to the partial volume effects from thecel above and below (green

arrow pointed circle region).
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Figure 5: Similar to Figure 2 but applied to thaibrMRI image (note that there is no HR groundhtriatrr this case). Contrast has
been altered for the zoomed-in results for bettesgntation. Compared to GF + bicubic interpolatiod SLSR results, our method
obtained a more homogenous result, e.g., greew gromted white matter region.
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Figure 6: PSNR (dB) and MSE for the ankle (firasty@and knee (second row) MRI images with HR grotmth, and the results with
additive noises f/ 0-&04& -&5 6 4 ) and run 10 times for each noise level to obth@error bars].
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