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ABSTRACT 
  

In this paper, we propose a novel self-learning based single-image super-resolution (SR) method, which is coupled with 
dual-tree complex wavelet transform (DTCWT) based denoising to better recover high-resolution (HR) medical images. 
Unlike previous methods, this self-learning based SR approach enables us to reconstruct HR medical images from a 
single low-resolution (LR) image without extra training on HR image datasets in advance. The relationships between the 
given image and its scaled down versions are modeled using support vector regression with sparse coding and dictionary 
learning, without explicitly assuming reoccurrence or self-similarity across image scales. In addition, we perform 
DTCWT based denoising to initialize the HR images at each scale instead of simple bicubic interpolation. We evaluate 
our method on a variety of medical images. Both quantitative and qualitative results show that the proposed approach 
outperforms bicubic interpolation and state-of-the-art single-image SR methods while effectively removing noise. 
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1. INTRODUCTION  

Images with high resolution are desirable in many real applications, e.g., medical image analysis, video surveillance and 
others 1. However, image resolution and quality are often limited by the hardware of the imaging acquisition system, 
economic and health costs of the imaging procedure, and the acquisition time. In particular, medical imaging systems 
acquire useful clinical details about the anatomical, physiological, functional and metabolic information of patients using 
various imaging modalities. Despite recent advances in imaging hardware development and imaging protocol 
improvement, images are always obtained with degraded quality because of the inherent noise of the medical imaging 
system. Moreover, aforementioned health limitations (e.g., ionizing radiation dose) and acquisition time limitations (e.g., 
Specific Absorption Rate limits) restrict the image resolution, thus may reduce the visibility of vital pathological details 
and compromise the diagnostic accuracy and prognosis. 

Instead of optimizing hardware settings and imaging sequences, image super-resolution (SR) provides an alternative 
solution to improve the perceptual quality of medical images in terms of the spatial resolution enhancement. Essentially, 
the goal of SR methods is to recover a high-resolution (HR) image from a single or multiple low-resolution (LR) images 
2. Existing SR algorithms can be broadly categorized into interpolation based, reconstruction based, and learning based 
methods 3. Widely used interpolation based SR methods assume that images are spatially smooth; however, this 
assumption is usually inaccurate and results in overly smoothed edges with ringing and jagged artifacts 3,4. 
Reconstruction based algorithms solve an inverse problem by recovering the HR image by fusing multiple LR images 3. 
However, this approach is time-consuming and infeasible due to multiple LR images are required 4, and are numerically 
limited to an upsampling factor of two 5. For learning based methods, the mapping function between LR and HR images 
(or their patches) is learned from a representative set of training image pairs. Once the mapping function is learned, it is 
applied to a single testing image to achieve SR. Despite numerous learning based methods 1,6,7 have claimed success for 
single-image SR, these methods hinge on certain amount of training data of LR and HR image pairs. Glasner et al. 2 
proposed a self-similarity based single-image SR method using a training dataset that is directly established from the LR 



 
 

 
 

input, by exploiting the patch redundancy among in-scale and cross-scale images in an image pyramid to enforce 
constraints for recovering the unknown HR image 3. Obviously, the advantage of this method is that there is no need to 
construct an extrinsic large training dataset beforehand; however, the abundance of self-similar patches is questionable 
for medical images. Yang and Wang 8 circumvented this problem by applying support vector regression (SVR) that 
learned proper SR models from patches at different image scales instead of searching for similar image patches. In their 
study, sparse representation based feature extraction was applied to make their SR algorithm more computationally 
feasible for real applications that was originally proposed for solving SR problem by Yang et al. 9. More recently, Singh 
and Ahuja 10 added sub-band energy constraints for the self-similarity based SR method, and Huang et al. 11 enriched the 
dataset of self-similar patches by looking at their transformed exemplars. Although these studies resulted in promising 
quantitative results, the SR methods were applied on relatively clean natural images. Therefore, the performances of 
these methods for noisy medical images are still questionable. Comprehensive reviews on various SR methods can be 
found elsewhere 12,13. 

In this paper, we propose an SVR based SR method that learns a sparse representation as robust and effective features 
across various down-sampled and denoised versions (using dual-tree complex wavelet transform, i.e., DTCWT) of a 
single input LR image. Once the SVR has been trained, we can apply the best model to predict the final SR image from a 
single LR image. Compared to the previous published learning based methods 1,6,7, our approach does not require the 
extra collection of HR training datasets. Compared to Glasner et al. 2 and more recent work by Singh and Ahuja 10, our 
method does not make assumption about self-similarity of image patches. In contrast to the SR methods 8,14, in which 
SVR was originally applied, we use DTCWT to suppress the noise, and we hypothesize that our method is more 
applicable for medical imaging applications, in which inherent noises are inevitable due to the limitations of the imaging 
systems and acquisition protocols. Quantitative and qualitative results show that our method outperforms bicubic 
interpolation and a self-learning based single-image SR method 8 while effectively removing noise. 

2. METHODOLOGY 

The overall framework of our method is summarized as shown in the flowchart in Figure 1. Detailed steps of our method 
are described below.  

 
Figure 1: Flowchart of our approach including both learning and prediction (For DTCWT, 4 layers of decomposition was used). 

2.1 Denoising and Pyramid Construction Using Dual-Tree Complex Wavelet Transform (DTCWT) 

The widely applied discrete wavelet transform, which replaces the infinitely oscillating sinusoidal basis function of the 
Fourier transform with a set of locally oscillating basis functions, has some known limitations, e.g., shift variance and 
lack of directionality 15. The dual-tree complex wavelet transform (DTCWT) overcomes shortcomings of the DWT such 
that it is nearly shift invariant and directionally selective in two and higher dimensions 15. A detailed review of DTCWT 
can be found in 15. Instead of using bicubic interpolated down-sampled versions of the original image to form the image 
pyramid 8, we decomposed the original image using DTCWT and each level was reconstructed using a soft-thresholding 
scheme 16 to accomplish the denoising and image pyramid construction, which we used to train the SVR. 

2.2 Feature Extraction Using Image Sparse Representation 

Instead of working directly with pixels, a sparse image representation 17 was learned, representing robust and effective 
features for SVR that can be formulated as an optimization problem, 
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in which 
  is the image patch (in our study we used a patch size of 5 by 5), �  is the over-complete dictionary to be 
learned, �  is the corresponding sparse coefficient vector, and �  is the regularization term that balances the model sparsity 



 
 

 
 

(l1-norm term) and the l2-norm based residual. According to Yang and Wang 8, better SR performance can be achieved 
by patch categorization, i.e., clustering patches into low and high spatial frequency ones and learning their dictionaries 
separately. In our study, this has been done using a Sobel filter, such that any patch including an edge derived from the 
Sobel filter is considered to have high spatial frequency. 

2.3 Support Vector Regression (SVR) 

Finally, SVR 18, which can fit the data in a high dimensional feature space without assuming the data distribution, was 
applied to model the relationship between the input sparse coefficient vector �  and the associated SR pixel value. In 
training, our SVR solves the following problem 
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in which $�  denotes the associated target variable, i.e., pixel value at the center of the patch considered in the HR image. 
' � � � �  is the sparse image patch features in the transformed space. And   is the norm vector of the nonlinear mapping 
function to be learned, and �  is the tradeoff between the generalization and the upper and lower bounds of training errors 
� �  and � �

�  subject to a threshold of +. Gaussian kernels were used, and parameters were estimated via cross-validation. 
SVR model selection was achieved according to a minimum-error-rate classi�cation rule based on Bayesian decision 
theory 8, and the trained best SVR model was applied to predict the �nal SR output for a test LR input. 

3. EXPERIMENTS AND RESULTS 

Experiments have been performed on relatively clean HR ankle and knee MRI images, from which LR inputs were 
synthesized with additive Gaussian noises (3 / 0-& 04& �-& 5�6��4 ) for the sake of simplicity. For these datasets, we 
have ground truth of the HR images without noise. In addition, we also tested our approach on noise corrupted LR 
clinical datasets, i.e., LR cardiac and brain MRI images (Table 1), but for which no ground truth was available. 
Evaluations have been done qualitatively by visual inspection and quantitatively using peak signal to noise ratio (PSNR) 
and mean squared error (MSE) that are defined as 
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where MSE is calculated by 
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The smaller the MSE, the closer the super-resolved result (HI ) is to the ground truth �H� .  

The performance of our method was compared with a conventional Gaussian filter + bicubic interpolation and the self-
learning based SR approach (SLSR) proposed in 8. Example SR results are shown in Figure 2–5. PSNR and MSE results 
of ankle and knee MRI images with HR ground truth, and various additive noises [(3 / 0-& 04& �-& 5�6��4 ) and run 10 
times for each noise level] are shown in Figure 6. 

Table 1: Experimental data.  

Data Original Resolution Input Resolution Output Resolution Ground Truth 
Ankle MRI 400x400 200x200 400x400 Yes 
Knee MRI 400x400 200x200 400x400 Yes 
Cardiac MRI 256x256 256x256 512x512 No 
Brain MRI 256x256 256x256 512x512 No 

 

4. CONCLUSION 

In this study, we proposed a self-learning based SR approach, which coupled DTCWT based denoising and SVR on 
image sparse representation based features. Both qualitative visual appearances and quantitative results have 



 
 

 
 

demonstrated that our method can achieve promising single-image SR compared to conventional bicubic interpolation 
and recently developed SLSR methods. 

 

 
Figure 2: First row from left to right: LR input, Gaussian filtering (GF) and bicubic interpolation result, SLSR result, and result of our 
proposed method for the ankle MRI image. Second row from left to right: Zoomed in version (red square region) of the LR input 
(nearest neighbor interpolated for displaying purpose), original HR ground truth, GF + bicubic interpolation result, SLSR result, and 
result of our proposed method. 

 
Figure 3: Similar to Figure 2 but applied to the knee MRI image. 



 
 

 
 

 
Figure 4: Similar to Figure 2 but applied to the cardiac MRI image (note that there is no HR ground truth for this case). Contrast has 
been altered for the zoomed-in results for better presentation. Compared to GF + bicubic interpolation and SLSR results, our method 
obtained much less confounded structures that may attribute to the partial volume effects from the slices above and below (green 
arrow pointed circle region).  

 
Figure 5: Similar to Figure 2 but applied to the brain MRI image (note that there is no HR ground truth for this case). Contrast has 
been altered for the zoomed-in results for better presentation. Compared to GF + bicubic interpolation and SLSR results, our method 
obtained a more homogenous result, e.g., green arrow pointed white matter region. 



 
 

 
 

 
 

 
Figure 6: PSNR (dB) and MSE for the ankle (first row) and knee (second row) MRI images with HR ground truth, and the results with 
additive noises [(3 / 0-& 04& �-& 5�6��4 ) and run 10 times for each noise level to obtain the error bars]. 
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