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Abstract. Although there have been many models for predictasources in
software development they provide little in the wafydecision-support for
software managers. It has been argued that modsésilon Bayesian Nets give
more benefits, in terms of decision-support, thaditional models. The model
described here is an improvement on one such wigstg model that evolved
from the EC project MODIST. Unlike the MODIST modké new model gives
users the ability to adjust the model either byirtiseibjective beliefs or by
feeding the model with empirical data from pastjgets. Also, the new model
gives freedom of choice of units of measurement dapressing model
variables. Consequently, the new model is signiflganore flexible.
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1 Introduction

In the software engineering domain much effort lesn spent on building models
for two areas:

1. Predicting resources necessary to accomplish eaatproject.
2. Predicting quality of a developed software product.

Indeed, it has been argued that almost all reseancter the classification of
‘software metrics’ is traceable to these two obyes [7]. Yet, few models have
addressed the ultimate objective of software mgtriehich is to provide software
managers support for improved decision-making ais# mssessment based on
guantification. Such an objective requires a comtim of both the resource and
quality perspective of a project. One approach llaatshown considerable promise in
addressing this requirement is Bayesian Nets A@ayesian Net (BN) is an acyclic
graph in which the nodes indicate variables exgesss probability distributions.
Nodes are connected according to the causal/retevesiationships between them.
Thus, they enable us to analyze the impact of @m@ble on others in many useful
combinations.
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A widely used BN model, called the project-leveldab[7] that was developed as
a part of EC Project MODIST [12], attempted to adddr the requirements for
decision making and risk assessment in softwarggsy while taking account of the
best empirical results that had informed earliesotgce prediction and defect
prediction models. In particular, the model attesdpto reflect the trade-offs that we
can normally observe in software projects between:

* the size of delivered software,

* the quality of delivered software,

 the effort required for developing the software t@gnms of both project duration
and number of people).

While the model has been widely used and quite esstal, it is limited in the
sense that the prior probability distributions e tmodel are heavily dependent on
previous empirical data that may not always bevesie Hence this paper focuses on
a new model that adopts the basic philosophy oM@DIST model, but which can
be much more easily adjusted for company-spec#eads.

In Section 2 we briefly present the original MODIpToject-level model and we
point out its limitations. We present our reviseddal in Section 3 that addresses the
key weaknesses of the MODIST model. In Section 4desonstrate how software
managers can use the revised model for betteridecapport and risk assessment.

2 Existing Bayesian Netsfor Software Managers

There have been many different software engineermgfels incorporating
resource prediction [2, 4, 6, 11, 17]. Some of tiveene also Bayesian Nets [3, 8, 13,
16, 19, 20].

We decided to base our improved model on the MODpgdject-level model
because it explicitly contains the trade-off comgraty has been validated in several
trials [7], provides the greatest potential for idex support and is the easiest for
adoption to our purposes. Fig. 1 illustrates thecstire of the main part of this model.
Based on project duration (expressed in personimdrand average number of
people full time, the model calculates effort, whis adjusted by the Brooks factor
[5]. Then effort is adjusted by process and peagpiality. Functionality delivered (in
function points) is calculated based on the adgusféort. Knowing the functionality
and the real effort for the project the model ckitas the software quality, which is
also adjusted by process and people quality. Becaregpagation in BNs enables both
forward and backward inference, it is possiblentee‘observations’ into any node of
the model and let the model produce revised prdibablistributions for all the (as
yet) unknown nodes. For example, if there is a kmawality requirement then the
model will produce predicted distributions for rasmes and functionality. If, in
addition, there are certain fixed resources themtbdel will again produce a revised
distribution for functionality.

The whole model takes into account other factochsas: process, people and
requirements specification quality as well as dsted communications and



Improved Decision-Making for Software Managers \gsBayesian Networks 3

management factors. It is too complex to show tlerdetail on a single diagram.
More on its structure and usage can be found in [7]

Project Av # people

duration full time

Total effort adjusted
by Brooks factor
Total
effective effort
Effort FD
differential

Process and
people quality

Quality Functionality
delivered delivered

Fig. 1. Project resource model (simplified), adapted f{@in

This project level model has been validated byowsipartners in the MODIST
project and has also been incorporated into thenABesk tool [1] that has several
thousand users worldwide.

There are two main weaknesses of the MODIST prégzeti model:

1. The model uses fixed units of measurement for sfawéors. Functionality is
expressed in function points and, partially, KLOioiisands lines of code). If
users decide to use KLOC, they need to providepthgramming language name
and the model still calculates the value expreasédnction points for the further
calculations. Effort is measured in person-montbempanies may wish to use
other units of measurement (in particular many oigtions involved in the
MODIST trials were uncomfortable using function ms). In such cases they have
to calculate their values/estimations outside tlogl@hto be expressed in the units
acceptable by the model.

2. Although the model contains several variables deiscy the (current) process and
product of software development, it lacks of eak@corporating new empirical
data by the end users. Many of the prior distringiat the heart of the ‘trade-off’
part of the model are based on empirical data thay not be relevant. As is
typical in any Bayesian model, while such priore axtremely useful for
organizations that have no previous relevant ddtatheir own, they can
significantly bias the predictions even once profgecific variables are observed.
Since software companies increasingly gather th&ir data about past projects, it
is important to allow the model to be adjusted &sily to reflect such data. For
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example, among the easiest metrics for calculafrom such databases are
productivity and error rates for the past projethsfortunately, it is not possible to
“feed” the model with such data.

3 Improved Bayesian Net for Software Managers

By considering the weaknesses of the existing madel have developed an
improved BN model that provides support for:

1. Different units of measurement for model variablesssibly even to the extent,
where users can use any unit of measurement tatatish to.
2. Easy incorporation of new (more relevant) empiraata into the model.

We have retained the crucial trade-off componenivden various software
development factors, but have simplified it by udihg only the most important
variables which are:

» easy to understand and interpret by users,
» easy to estimate based on the past data.

Fig. 2 illustrates the schematic view of the immrd\Bayesian Net for predicting
resources in software development. Because it @tplicaptures productivity we
called this new model the “productivity model”. Adllipses on this figure reflect
nodes in the net, rectangles with light-grey backgd reflect model constants and
rectangles with gradient background reflect suboetdaining more detailed nodes.

The model consists of the following parts:

1. Factorsinfluencing prior rates (Fig. 2 — gradient-filled rectangle).

This subnet contains nodes which are general fétdluencing prior error and
productivity rates. This subnet is used only if &mel user does not enter observations
for the prior error and productivity rates. In su@Eses these rates are estimated by the
model based on the values of the nodes in thisetubrg. organization or application

type.

2. Prior error and productivity rates (Fig. 2 — grey ellipses).

These rates are the values for the past projetts. uber enters the values as
calculated mean values from the past data. If reyunable to calculate them the
model will estimate them based on the factors erfting them in the subnet
described above.

3. Constants describing process and project attributes which adjust prior error
and productivity rates (Fig. 2 — light-grey-filled rectangles).

In each case the idea is to capture any key diftexe between the current project
and the typical past projects for which we entettesl prior error and productivity
rates. This difference (which is expressed simplyagercentage) can be estimated
using complexity metrics or expert judgement. Thestants are:

» Percentage difference of software complexity.
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» Percentage difference of software project scalewhich we mean scale factors
affecting infrastructure rather than pure developthe

» Percentage difference of software novelty (by whigh mean what part of the
project will be built from scratch as opposed tase of existing documentation,
design, code, etc.).

Factors
influencing

/ prior rates

% diff. in effort
devoted to quality

Prior
error rate

Prior
productivity rate

Constant Constant Constant

% difference % difference % difference
of project of project novelty of project scale
complexity

Requirements

/ quality

L —

Adjusted Adjusted
error rate Management | __— productivity rate
quality
Process
quality
People

quality

Delivered
number of units

Project
duration

Number of
units defective

Effort adjusted by
Brooks factor

# of people

full-time

Fig. 2. Schematic view of productivity model
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4. Process and people factors which adjust error and productivity rates (Fig. 2 —
gradient-filled rectangles).

These factors are incorporated in the model agolf@ving subnets: requirements
quality, management quality, process quality angppequality. Formulating them as
subnets containing more detailed nodes enablesigemd to either use those detailed
nodes (e.g. staff motivation and/or staff exper@nfor expressing the quality of
people or to directly use an aggregated peopldtyumlde.

These factors are expressed on a ranked scale (fremy low” to “very high”) as
opposed to the previously discussed constants,hwdnie expressed on a continuous
scale (real numbers). Their values are not absollitey reflect relative values
compared to the mean values for the past projéictee value is “normal” then it
means it is the same as it was on average forakegrojects. In this case it would
not affect either error or productivity rate. Ifig “high” it means that this quality is
higher than it used to be in the past. It doesmeéan that it is absolutely “high”.
Assuming that in the past the quality was alwayeryvhigh” (the highest value
possible in this model) and now it is set to “high”’means that currently it is even
higher. Although the common meaning would sugdwt ‘thigh” is lower than “very
high”. In this model the values higher then “norinéhigh” and “very high” increase
productivity rate and decrease the error rate. vidlees below “normal”: “low” and
“very low” decrease productivity rate and increas®r rate.

5. Adjusted error and productivity rates (Fig. 2 — grey ellipses).

These two nodes reflect error and productivity satdich have been adjusted by
all constants and factors. Therefore they are stienated rates for the current project
They influence the most important part of the motted trade-off component.

In the model these two nodes are not calculate@rtipg on their parent nodes
directly. This would lead to very long calculatitimes because each of them has
several parent nodes [18]. In fact there are hiddaahes that represent these rates
adjusted sequentially by constants and factors.dé/@ot show them on the figure
illustrating the model to keep it simple and clear.

6. Trade-off component between the quality, functionality and effort (Fig. 2 —
dark grey ellipses).

This is the main part of the model. Knowing the carctivity rate and effort the
model calculates the functionality — how much safevcan be done. Knowing the
functionality and error rate the model calculatesvimany software units we should
expect to be defective (the quality).

Effort in this model is expressed as a combinatibproject duration and number
of people working full-time at the project. Thidat is adjusted by a Brooks factor
[5], like it was in the project-level MODIST modEf, 12]. This adjustment means
that, for example, the total productive effort gp@ople working for 10 months is not
the same as 20 people working for one month, ekiengh the total effort in both
cases is 20 person-months. We introduced this &igurs.

The node “percentage difference in effort devotedquality” also takes part in the
analysis of trade-offs. Normally part of total deamment effort is devoted to improve
the quality of the software rather than extendfutsctionality. This node describes
how much the effort spent on improving softwareliqyaiffers in the current project
compared to this effort in the past projects (fdvick the prior error and productivity
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rates have been estimated). The higher positiierdiice we have, the lower error
rate (better quality) and the lower productivitytergless functionality) we should
expect. This is because, given the value of efftr¢ more of it we spend on
increasing quality the less we can spend on extegritiie functionality of software.

One other key improvement in the revised model amexhto the MODIST model
is that we have applied the dynamic discretisatitgorithm [14, 15] by marking
making all numeric nodes ‘simulation’ nodes. Thisans that we did not need to
define the fixed node states when the model waatede This resulted in more
precise predictions. We have previously testeddtyerithm for the defect prediction
model from the MODIST project [9]. The model hasbemplemented using the
AgenaRisk software [1].

4 Decision Support in Improved Bayesian Net

Using the productivity model we can perform estiorad for the size and quality
of delivered software and the effort required fewveloping the software. But it is not
only that. The key feature of the model is theigbtb perform a trade-off analysis
between these variables: how the change in orteeaf tffects the remaining ones.

Because our model is a Bayesian Net when users tigistimate the predictive
variable they do not need to provide observatiamsafl of the predictor variables.
That is because predictor variables always haveihiability distributions assigned
(priors) even if they are not passed directly bgrasThis is a useful feature because
usually it is not possible or is too costly to pwite the values for all predictor
variables during a software project.

From such a model we expect to get answers toottening types of questions:

» Given the certain prior productivity and error sateotal effort for the project and
leaving default values for the remaining variabp@bich means that both project
and process factors and constants are the sanoe e fpast projects) how much
functionality and of which quality we can produce?

» How good do process and people need to be if dgtua need better quality
software than the model originally suggests?

» How much more effort do we have to put to delivettér software?

« How much effort do we need to deliver software eftain functionality and
quality?

» How does the change in the process and peopletyudiect the functionality
delivered and the quality of software.

* What software functionality and quality should wepect if actually our project is
more complex than the previous ones?

» What impact on functionality and quality will haaeproportional change of effort
devoted to quality?
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4.1 Predicting Functionality and Quality From Resour ces

In this first example we provide information abale prior productivity rate (20
function points per man-month) and prior error r@i€1). Expressing productivity
rate in function points per person-month meansttitfunctionality delivered” will
be expressed in function points, “project duratiom’months and effort in person-
months. We will keep such assumptions about batvétues of these rates and units
of measurement for all of the examples. But inigortant to note that the choice of
units is completely flexible.

We declare that the effort we can spend on thigeptds: project duration (12

months), and number of people (20). We also asshate compared to the previous
projects:

 this project is of similar complexity, novelty argtale, as are the staff and
processes

» we devote the same proportion of effort on quality.

Delivered number of units ( Productivity)

4.0E-4
3.2E4
Z4E4
1.6E-4
B.0ES

0.0

e 00

0.0020 |
0.0016 |
0.0012 |
B.0E-4 |
4.0E-4 |

@ Murnbetr of units defective ( Productivity])

00024 |

oo
ooos

Fig. 3. Predicted functionality and quality of deliverexfta/are
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Given these constraints the model predicts thatstweuld expect to develop
software of around 2900 function points and corgiraround 215 defective units
(function points). Fig. 3 illustrates distributiofts these predictive variables.

4.2 Delivering Better Software

Let us assume that we are not satisfied with tleedipted quality. We enter a lower
value (100) for the node “number of units defectithan the model originally
predicted. We can reach the target by either:

* Improving the process and people quality while lkegpthe initial effort
unchanged - Fig. 4 a),

» Spending more effort assuming that we will not gsscand people quality — Fig. 4

b).
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Fig. 4. Delivering better software

4.3 Predicting Effort

In this scenario our aim is to predict effort reqdi to develop software of given
functionality (3500 function points) and qualityO( defective units). Like in the first
example, we are assuming that the same level gégircomplexity, novelty, scale
proportion of effort devoted to quality, processl geople quality.

Project duration { Productivity) Awverage # people full time ( Productivity)
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Fig. 5. Predicted effort for developing a system

From such constraints the model predicts the teffirt as well as separately

project duration and number of people. Fig. 5 thates that we need around 18
people for 20 months.
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44 Predicting Functionality and Quality Change Influenced by Change in
Process and People Quality

Now we are assuming the same project constraintsnathe first scenario.
However, now we are sure to reach much higher gsogeality and we believe that
we have much better people than in the past psj€rir aim is again to predict how
much functionality we can develop and what willitsequality.

Delivered number of units ( Productivity)
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Fig. 6. Predicted functionality and quality of delivereaftsvare for better process and people
quality

The model predicts that we should expect to be &bevelop around four times
more software then initially and that we should entpthat this software will contain
around two times more defects then initially (F&). However, that increase in
number of defective units does not mean the deergaguality. In fact we should
expect error rate to drop by a half. It means thefarger number of defective units is
purely because the functionality of delivered saftsvwill increase even more.

45 Predicting Functionality and Quality for a More Complex Project

In this scenario we wish to predict the functiotyaland quality of delivered
software. Our assumptions are the same as indtesienario. The only difference is
that now we estimate that the current project B Tore complex than past projects.
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Fig. 7. Predicted functionality and quality for complexdamovel project
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Fig. 7illustrates that, with this higher project complgxand the same resources,
we can produce less and with lower quality compaoetthe scenario which assumes
no change in project complexity.

In addition to the higher project complexity, suppowe also estimate higher
novelty in a sense that we will be able to reusenaller part of software compared to
past projects. Fig. Mlustrates even more decrease in the functional@yvered. We
observe that this change causes us to expect lesken of defective software units.

But this is entirely due to the fact that it wik lsmaller. Project novelty has no impact
on the error rate.

4.6 Predicting Functionality and Quality When More Effort is Devoted to
Quality

Our aim is again to predict the functionality ar tquality of the developed
software. We are again assuming the same valueaf@bles mentioned in the first
scenario. The only difference is that we would likeanalyze what will happen if we
spend 25% more effort on improving software quatitynpared to the “typical’
project in the past. We are not assuming the chamtiee total effort for the project.
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Fig. 8. Predicted functionality and quality of delivereaftesare when more effort is spent on
quality

Because we are spending proportionally more effortquality rather than on
extending functionality the results show that now should expect to produce less
software but with the better quality. Fig. 8 illges this.

5 Summary and Future Work

We have described a new model that can produoceiness and quality predictions
for software projects, but which more importantigncperform powerful what-if
analysis and trade-off analysis to support projeahagers confronted with changing
project realities.. Although this type of analysias possible in a previous model (the

MODIST project-level model) the model presentedhis paper overcomes the two
major weakness of the MODIST model:

* lItis independent on the units of measurementfforteand functionality,
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 Itis much easier to use basic metrics, such as end productivity rates, extracted
from past project databases to adjust the modeh#ospecific software company’s
needs.

In addition the model is also more accurate byueirbf the use of dynamic
discretisation of numeric nodes.

This new ‘productivity’ model can be of immediateagtical use since it directly
addresses the improvements requested by the mamg af the MODIST project
level model. However, there are opportunities folt further improvements and
refinements. For example, many of the variableshsas effort, process and people
quality, are aggregations. This means that thegrid®s project and process by a
single value (distribution). It is useful to have epportunity to split such variables
into smaller parts, for example according to theettspment activities: requirements
and specification, design, implementation, testamgl rework. We would than be
able, for example, to differentiate process qualigythese phases or estimate/assign
effort for these specific activities instead of yfdr the whole project. We are now
developing such an extended productivity model wiliprovide even better decision
support for project managers.
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