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Abstract. Although there have been many models for predicting resources in 
software development they provide little in the way of decision-support for 
software managers. It has been argued that models based on Bayesian Nets give 
more benefits, in terms of decision-support, than traditional models. The model 
described here is an improvement on one such widely used model that evolved 
from the EC project MODIST. Unlike the MODIST model the new model gives 
users the ability to adjust the model either by their subjective beliefs or by 
feeding the model with empirical data from past projects. Also, the new model 
gives freedom of choice of units of measurement for expressing model 
variables. Consequently, the new model is significantly more flexible. 
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1   Introduction 

In the software engineering domain much effort has been spent on building models 
for two areas: 

1. Predicting resources necessary to accomplish a software project. 
2. Predicting quality of a developed software product. 

Indeed, it has been argued that almost all research under the classification of 
‘software metrics’ is traceable to these two objectives [7]. Yet, few models have 
addressed the ultimate objective of software metrics, which is to provide software 
managers support for improved decision-making and risk assessment based on 
quantification. Such an objective requires a combination of both the resource and 
quality perspective of a project. One approach that has shown considerable promise in 
addressing this requirement is Bayesian Nets [10]. A Bayesian Net (BN) is an acyclic 
graph in which the nodes indicate variables expressed as probability distributions. 
Nodes are connected according to the causal/relevance relationships between them. 
Thus, they enable us to analyze the impact of one variable on others in many useful 
combinations. 
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A widely used BN model, called the project-level model [7] that was developed as 
a part of EC Project MODIST [12], attempted to address the requirements for 
decision making and risk assessment in software projects, while taking account of the 
best empirical results that had informed earlier resource prediction and defect 
prediction models. In particular, the model attempted to reflect the trade-offs that we 
can normally observe in software projects between: 

• the size of delivered software, 
• the quality of delivered software, 
• the effort required for developing the software (in terms of both project duration 

and number of people). 

While the model has been widely used and quite successful, it is limited in the 
sense that the prior probability distributions in the model are heavily dependent on 
previous empirical data that may not always be relevant. Hence this paper focuses on 
a new model that adopts the basic philosophy of the MODIST model, but which can 
be much more easily adjusted for company-specific needs. 

In Section 2 we briefly present the original MODIST project-level model and we 
point out its limitations. We present our revised model in Section 3 that addresses the 
key weaknesses of the MODIST model. In Section 4 we demonstrate how software 
managers can use the revised model for better decision support and risk assessment. 

2   Existing Bayesian Nets for Software Managers 

There have been many different software engineering models incorporating 
resource prediction [2, 4, 6, 11, 17]. Some of them were also Bayesian Nets [3, 8, 13, 
16, 19, 20]. 

We decided to base our improved model on the MODIST project-level model 
because it explicitly contains the trade-off component, has been validated in several 
trials [7], provides the greatest potential for decision support and is the easiest for 
adoption to our purposes. Fig. 1 illustrates the structure of the main part of this model. 
Based on project duration (expressed in person-months) and average number of 
people full time, the model calculates effort, which is adjusted by the Brooks factor 
[5]. Then effort is adjusted by process and people quality. Functionality delivered (in 
function points) is calculated based on the adjusted effort. Knowing the functionality 
and the real effort for the project the model calculates the software quality, which is 
also adjusted by process and people quality. Because propagation in BNs enables both 
forward and backward inference, it is possible to enter ‘observations’ into any node of 
the model and let the model produce revised probability distributions for all the (as 
yet) unknown nodes. For example, if there is a known quality requirement then the 
model will produce predicted distributions for resources and functionality. If, in 
addition, there are certain fixed resources then the model will again produce a revised 
distribution for functionality.  

The whole model takes into account other factors such as: process, people and 
requirements specification quality as well as distributed communications and 
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management factors. It is too complex to show them in detail on a single diagram. 
More on its structure and usage can be found in [7]. 

 

 

Fig. 1. Project resource model (simplified), adapted from [7] 

This project level model has been validated by various partners in the MODIST 
project and has also been incorporated into the AgenaRisk tool [1] that has several 
thousand users worldwide. 

There are two main weaknesses of the MODIST project-level model: 

1. The model uses fixed units of measurement for some factors. Functionality is 
expressed in function points and, partially, KLOC (thousands lines of code). If 
users decide to use KLOC, they need to provide the programming language name 
and the model still calculates the value expressed in function points for the further 
calculations. Effort is measured in person-months. Companies may wish to use 
other units of measurement (in particular many organizations involved in the 
MODIST trials were uncomfortable using function points). In such cases they have 
to calculate their values/estimations outside the model to be expressed in the units 
acceptable by the model. 

2. Although the model contains several variables describing the (current) process and 
product of software development, it lacks of ease of incorporating new empirical 
data by the end users. Many of the prior distributions at the heart of the ‘trade-off’ 
part of the model are based on empirical data that may not be relevant. As is 
typical in any Bayesian model, while such priors are extremely useful for 
organizations that have no previous relevant data of their own, they can 
significantly bias the predictions even once project-specific variables are observed. 
Since software companies increasingly gather their own data about past projects, it 
is important to allow the model to be adjusted to easily to reflect such data. For 
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example, among the easiest metrics for calculation from such databases are 
productivity and error rates for the past projects. Unfortunately, it is not possible to 
“feed” the model with such data. 

3   Improved Bayesian Net for Software Managers 

By considering the weaknesses of the existing model we have developed an 
improved BN model that provides support for: 

1. Different units of measurement for model variables, possibly even to the extent, 
where users can use any unit of measurement that they wish to. 

2. Easy incorporation of new (more relevant) empirical data into the model. 

We have retained the crucial trade-off component between various software 
development factors, but have simplified it by including only the most important 
variables which are: 

• easy to understand and interpret by users, 
• easy to estimate based on the past data. 

Fig. 2 illustrates the schematic view of the improved Bayesian Net for predicting 
resources in software development. Because it explicitly captures productivity we 
called this new model the “productivity model”. All ellipses on this figure reflect 
nodes in the net, rectangles with light-grey background reflect model constants and 
rectangles with gradient background reflect subnets containing more detailed nodes. 

The model consists of the following parts: 

1. Factors influencing prior rates (Fig. 2 – gradient-filled rectangle). 
This subnet contains nodes which are general factors influencing prior error and 

productivity rates. This subnet is used only if the end user does not enter observations 
for the prior error and productivity rates. In such cases these rates are estimated by the 
model based on the values of the nodes in this subnet, e.g. organization or application 
type. 

2. Prior error and productivity rates (Fig. 2 – grey ellipses). 
These rates are the values for the past projects. The user enters the values as 

calculated mean values from the past data. If they are unable to calculate them the 
model will estimate them based on the factors influencing them in the subnet 
described above. 

3. Constants describing process and project attributes which adjust prior error 
and productivity rates (Fig. 2 – light-grey-filled rectangles).  
In each case the idea is to capture any key differences between the current project 

and the typical past projects for which we entered the prior error and productivity 
rates. This difference (which is expressed simply as a percentage) can be estimated 
using complexity metrics or expert judgement. The constants are: 

• Percentage difference of software complexity.  
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• Percentage difference of software project scale (by which we mean scale factors 
affecting infrastructure rather than pure development). 

• Percentage difference of software novelty (by which we mean what part of the 
project will be built from scratch as opposed to reuse of existing documentation, 
design, code, etc.). 

 

 

Fig. 2. Schematic view of productivity model 
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4. Process and people factors which adjust error and productivity rates (Fig. 2 – 
gradient-filled rectangles). 
These factors are incorporated in the model as the following subnets: requirements 

quality, management quality, process quality and people quality. Formulating them as 
subnets containing more detailed nodes enables end users to either use those detailed 
nodes (e.g. staff motivation and/or staff experience) for expressing the quality of 
people or to directly use an aggregated people quality node. 

These factors are expressed on a ranked scale (from “very low” to “very high”) as 
opposed to the previously discussed constants, which are expressed on a continuous 
scale (real numbers). Their values are not absolute. They reflect relative values 
compared to the mean values for the past projects. If the value is “normal” then it 
means it is the same as it was on average for the past projects. In this case it would 
not affect either error or productivity rate. If it is “high” it means that this quality is 
higher than it used to be in the past. It does not mean that it is absolutely “high”. 
Assuming that in the past the quality was always “very high” (the highest value 
possible in this model) and now it is set to “high”, it means that currently it is even 
higher. Although the common meaning would suggest that “high” is lower than “very 
high”. In this model the values higher then “normal”: “high” and “very high” increase 
productivity rate and decrease the error rate. The values below “normal”: “low” and 
“very low” decrease productivity rate and increase error rate. 

5. Adjusted error and productivity rates (Fig. 2 – grey ellipses). 
These two nodes reflect error and productivity rates which have been adjusted by 

all constants and factors. Therefore they are the estimated rates for the current project  
They influence the most important part of the model: the trade-off component. 

In the model these two nodes are not calculated depending on their parent nodes 
directly. This would lead to very long calculation times because each of them has 
several parent nodes [18]. In fact there are hidden nodes that represent these rates 
adjusted sequentially by constants and factors. We do not show them on the figure 
illustrating the model to keep it simple and clear. 

6. Trade-off component between the quality, functionality and effort (Fig. 2 – 
dark grey ellipses). 
This is the main part of the model. Knowing the productivity rate and effort the 

model calculates the functionality – how much software can be done. Knowing the 
functionality and error rate the model calculates how many software units we should 
expect to be defective (the quality). 

Effort in this model is expressed as a combination of project duration and number 
of people working full-time at the project. This effort is adjusted by a Brooks factor 
[5], like it was in the project-level MODIST model [7, 12]. This adjustment means 
that, for example, the total productive effort of 2 people working for 10 months is not 
the same as 20 people working for one month, even though the total effort in both 
cases is 20 person-months. We introduced this adjustment. 

The node “percentage difference in effort devoted to quality” also takes part in the 
analysis of trade-offs. Normally part of total development effort is devoted to improve 
the quality of the software rather than extend its functionality. This node describes 
how much the effort spent on improving software quality differs in the current project 
compared to this effort in the past projects (for which the prior error and productivity 
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rates have been estimated). The higher positive difference we have, the lower error 
rate (better quality) and the lower productivity rate (less functionality) we should 
expect. This is because, given the value of effort, the more of it we spend on 
increasing quality the less we can spend on extending the functionality of software. 

One other key improvement in the revised model compared to the MODIST model 
is that we have applied the dynamic discretisation algorithm [14, 15] by marking 
making all numeric nodes ‘simulation’ nodes. This means that we did not need to 
define the fixed node states when the model was created. This resulted in more 
precise predictions. We have previously tested this algorithm for the defect prediction 
model from the MODIST project [9]. The model has been implemented using the 
AgenaRisk software [1]. 

4   Decision Support in Improved Bayesian Net 

Using the productivity model we can perform estimations for the size and quality 
of delivered software and the effort required for developing the software. But it is not 
only that. The key feature of the model is the ability to perform a trade-off analysis 
between these variables: how the change in one of them affects the remaining ones. 

Because our model is a Bayesian Net when users wish to estimate the predictive 
variable they do not need to provide observations for all of the predictor variables. 
That is because predictor variables always have the probability distributions assigned 
(priors) even if they are not passed directly by users. This is a useful feature because 
usually it is not possible or is too costly to estimate the values for all predictor 
variables during a software project. 

From such a model we expect to get answers to the following types of questions: 

• Given the certain prior productivity and error rates, total effort for the project and 
leaving default values for the remaining variables (which means that both project 
and process factors and constants are the same as for the past projects) how much 
functionality and of which quality we can produce? 

• How good do process and people need to be if actually we need better quality 
software than the model originally suggests? 

• How much more effort do we have to put to deliver better software? 
• How much effort do we need to deliver software of certain functionality and 

quality? 
• How does the change in the process and people quality affect the functionality 

delivered and the quality of software. 
• What software functionality and quality should we expect if actually our project is 

more complex than the previous ones? 
• What impact on functionality and quality will have a proportional change of effort 

devoted to quality? 
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4.1   Predicting Functionality and Quality From Resources 

In this first example we provide information about the prior productivity rate (20 
function points per man-month) and prior error rate (0.01). Expressing productivity 
rate in function points per person-month means that the “functionality delivered” will 
be expressed in function points, “project duration” in months and effort in person-
months. We will keep such assumptions about both the values of these rates and units 
of measurement for all of the examples. But it is important to note that the choice of 
units is completely flexible. 

We declare that the effort we can spend on this project is: project duration (12 
months), and number of people (20). We also assume that, compared to the previous 
projects: 

• this project is of similar complexity, novelty and scale, as are the staff and 
processes 

• we devote the same proportion of effort on quality. 
 

 

Fig. 3. Predicted functionality and quality of delivered software 

Given these constraints the model predicts that we should expect to develop 
software of around 2900 function points and containing around 215 defective units 
(function points). Fig. 3 illustrates distributions for these predictive variables. 

4.2   Delivering Better Software 

Let us assume that we are not satisfied with the predicted quality. We enter a lower 
value (100) for the node “number of units defective” than the model originally 
predicted. We can reach the target by either: 
• Improving the process and people quality while keeping the initial effort 

unchanged – Fig. 4 a), 
• Spending more effort assuming that we will not process and people quality – Fig. 4 

b).  
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a)   

b)   

Fig. 4. Delivering better software 

4.3   Predicting Effort 

In this scenario our aim is to predict effort required to develop software of given 
functionality (3500 function points) and quality (100 defective units). Like in the first 
example, we are assuming that the same level of project complexity, novelty, scale 
proportion of effort devoted to quality, process and people quality. 

 

 

Fig. 5. Predicted effort for developing a system 

From such constraints the model predicts the total effort as well as separately 
project duration and number of people. Fig. 5 illustrates that we need around 18 
people for 20 months. 
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4.4   Predicting Functionality and Quality Change Influenced by Change in 
Process and People Quality 

Now we are assuming the same project constraints as in the first scenario. 
However, now we are sure to reach much higher process quality and we believe that 
we have much better people than in the past projects. Our aim is again to predict how 
much functionality we can develop and what will be its quality. 

 

 

Fig. 6. Predicted functionality and quality of delivered software for better process and people 
quality 

The model predicts that we should expect to be able to develop around four times 
more software then initially and that we should expect that this software will contain 
around two times more defects then initially (Fig. 6). However, that increase in 
number of defective units does not mean the decrease in quality. In fact we should 
expect error rate to drop by a half. It means that the larger number of defective units is 
purely because the functionality of delivered software will increase even more. 

4.5   Predicting Functionality and Quality for a More Complex Project 

In this scenario we wish to predict the functionality and quality of delivered 
software. Our assumptions are the same as in the first scenario. The only difference is 
that now we estimate that the current project is 70% more complex  than past projects. 

 

 

Fig. 7. Predicted functionality and quality for complex and novel project 



Improved Decision-Making for Software Managers Using Bayesian Networks      11 

Fig. 7 illustrates that, with this higher project complexity and the same resources, 
we can produce less and with lower quality compared to the scenario which assumes 
no change in project complexity. 

In addition to the higher project complexity, suppose we also estimate higher 
novelty in a sense that we will be able to reuse a smaller part of software compared to 
past projects. Fig. 7 illustrates even more decrease in the functionality delivered. We 
observe that this change causes us to expect less number of defective software units. 
But this is entirely due to the fact that it will be smaller. Project novelty has no impact 
on the error rate. 

4.6   Predicting Functionality and Quality When More Effort is Devoted to 
Quality 

Our aim is again to predict the functionality and the quality of the developed 
software. We are again assuming the same values for variables mentioned in the first 
scenario. The only difference is that we would like to analyze what will happen if we 
spend 25% more effort on improving software quality compared to the “typical” 
project in the past. We are not assuming the change in the total effort for the project. 

 

 

Fig. 8. Predicted functionality and quality of delivered software when more effort is spent on 
quality 

Because we are spending proportionally more effort on quality rather than on 
extending functionality the results show that now we should expect to produce less 
software but with the better quality. Fig. 8 illustrates this. 

5   Summary and Future Work 

We have described a  new model that can produce resource and quality predictions 
for software projects, but which more importantly can perform powerful what-if 
analysis and trade-off analysis to support project managers confronted with changing 
project realities.. Although this type of analysis was possible in a previous model (the 
MODIST project-level model) the model presented in this paper overcomes the two 
major weakness of the MODIST model: 

• It is independent on the units of measurement for effort and functionality, 
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• It is much easier to use basic metrics, such as error and productivity rates, extracted 
from past project databases to adjust the model for the specific software company’s 
needs. 

In addition the model is also more accurate by virtue of the use of dynamic 
discretisation of numeric nodes. 

This new ‘productivity’ model can be of immediate practical use since it directly 
addresses the improvements requested by the many users of the MODIST project 
level model. However, there are opportunities for still further improvements and 
refinements. For example, many of the variables, such as effort, process and people 
quality, are aggregations. This means that they describe project and process by a 
single value (distribution). It is useful to have an opportunity to split such variables 
into smaller parts, for example according to the development activities: requirements 
and specification, design, implementation, testing and rework. We would than be 
able, for example, to differentiate process quality by these phases or estimate/assign 
effort for these specific activities instead of only for the whole project. We are now 
developing such an extended productivity model that will provide even better decision 
support for project managers. 
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