Axiomatic approach to Software Metrication through Program

Decomposition

N.E. FENTON*

Department of Electrical and Electronic Engineering, Polytechnic of the South Bank, Borough Road, London SEI 0AA

R. W. WHITTY

Department of Mathematical Sciences, University of London Goldsmiths’ College, New Cross, London SE14 6NW

Software metrication is a major problem in the engineering of software and software-related systems. To give coherence
to attempts at metrication and to allow convincing statistical validation of these attempts it is proposed to axiomatise
assumptions made about software parameters and ‘ complexity’. The axioms are intrinsically related to the
‘decomposition hierarchy’ of programs, and this important notion is formalised in this paper for arbitrary programs.

Received August 1985

1. INTRODUCTION

The need for software complexity metrics is well
documented in the literature and some excellent recent
approaches may be found.? ® !2 In this paper we are
interested in the definitions and derivations of the metrics
themselves. The term ‘software complexity metric’ is
itself rather misleading — flattering even — since it is
usually used in the software community to refer to any
parameter (or explicitly a non-negative real-valued
function) defined on software (or explicitly a suitable
representation of the software) which it is Aoped is some
indicator of one or more aspects of the software’s
complexity. A problem with many previous approaches
to metrication is the lack of a sound theoretical basis; this
has often led to (a) ill-defined functions purporting to be
metrics or (b) functions which rather than reflecting any
genuine inherent complexity are at best crude * predictors’
of (already) measurable software features like number of
bugs; in this sense they are usually no better (and in some
cases worse) than a simple ‘lines of code count’.!- ¢ In this
paper we hope to redress this unfortunate balance.

A recent paper by Prather® has attempted to
characterise the common properties which software
complexity metrics ought to satisfy by describing them in
the context of an axiomatic theory. This is a highly
commendable approach and one which is taken consider-
ably further in this paper. The most serious limitation of
Prather’s axioms is that they are defined only for the class
of ‘structured’ programs, where structuredness corre-
sponds informally to the usual notion of D-structured-
ness.!! Thus in order to extend metrics to arbitrary
programs (i.e. possibly ‘unstructured’ ones) a totally
different approach (i.e. different from the axiomatic
approach) is taken by Prather and also incidentally by
others who have defined similar metrics.!? We consider
this to be an unnecessary divergence from a unified
approach; we have already argued at length3: 4, 19, 11 that
the traditional notion of D-structuredness as the basis for
structured design and analysis is unnecessarily and
artificially restrictive, and nowhere is this more apparent
than when we are attempting to axiomatise properties of
structure. Structuredness is most naturally defined (as in

* To whom correspondence should be addressed.

Refs. 4 and 10) in terms of arbitrary families of basic
structures, so that programs do not fall into just two
categories, ‘structured’ or ‘unstructured’ (as assumed by
many researchers in this area), but all have a quantifiable
degree of structure characterised by the hierarchy of basic
structures on which it is built. In section 2 we provide a
formal description of the hierarchical structure of any
program. This general notion of structure is used in
section 3 to consider metrication axioms and metrics
themselves defined on any class of programs, thus
overcoming the limitations of previous approaches.
Finally in section 4 we suggest areas for further
development using the axiomatic approach.

2. PROGRAM STRUCTURE

The basis for many of the ideas in this section is to be
found in Refs. 4, 10 and 13. Although reference will be
made to these earlier works, the exposition here is
self-contained and contains several new results and
notations.

2.1. Definition

A flowgraph F= (G, a,z) is a triple consisting of a
directed multigraph G together with distinguished nodes
a, z of G satisfying:

(i) the node a (the szart node) has directed paths to all
other nodes of G;

(ii) every node has a directed path to z (the stop node)
which has zero outdegree.

The above definition of flowgraph allows nodes of
arbitrary outdegree. In general a node of outdegree n will
be called an n-ary predicate node (n > 2), while nodes of
outdegree 1 arecalled procedure nodes. Certain flowgraphs
occur sufficiently often to merit special names. In
particular Fig. 1 describes (in the usual way) the
flowgraphs P, (n > 0), D,, Dy, D,, D,, D,, C, which will
subsequently be referenced by name only. As usual the
start and stop nodes are distinguished diagrammatically
by encircling. It has been shown in Refs. 4 and 10 how
a given program written in a procedural language is
mapped on to a unique flowgraph; an example of a

program (written in Pascal) and its associated flowgraph:

is given in Fig. 2. The model is similar to the usual
flowchart representation except that in addition to the

330 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

GTOZ ‘2T snbny uo Aoy ayl 7 s,mewojoyreq 1S e /Hlo'seulnolploxo’ ufwoo//:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

AXIOMATIC APPROACH TO SOFTWARE METRICATION

© C O O—>——+—0 O——0+»—0»0 oo ., K 00
Po P 1 Pz P3 P”
il (n procedure
floweraph) nodes)
D1 D', D2 03 D4 Cz
Figure 1
read (x)
Program Example (input, output); x=0
{Taken from [2]}
Var x, y : real;
Begin
read (x); d
if x = 0 then read (y) read ()
else read (x)
n
while x < > 0 do
read (x); read (y)
read ()
end
end
Figure 2

introduction of the necessary formality needed for
rigorous analysis it removes (i) ambiguities about node
association and (ii) redundancies like junction nodes and
start box.

In this paper we are concerned only with complexity
caused by control flow, so we shall have no need to
consider labelled flowgraphs as we did in Ref. 4 and in
particular in Ref. 3. However, future developments of this
work will certainly consider both structural and linguistic
characteristics (as in Ref. 3), in which case we shall simply
impose the labelling on the same model.

The ‘D-graphs’ D,, D}, D,, D, (or sometimes certain
subsets of these) are usually taken as the building blocks
for ‘structured’ programs; thus in the literature the latter
are usually informally defined as being those programs
(i.e. flowgraphs) which can be ‘built up’ using these
structures together with operations of ‘sequence’ and
‘nesting’. We formalise these concepts for the more
general definition of structured programs considered
here.

2.2. Definition

(i) Nesting (Composition). Given a flowgraph F with
some procedure node x, we nest a second flowgraph F,
on x, written F (F, on x), by deleting the unique arc
leading out of x, identifying the stop node of F, with the
node this arc led to in F and identifying the start node
of E, with x (an example is given in Fig. 3(a)).

(ii) Sequence. Given two flowgraphs F, and F, we shall

denote by seq (£, F,) or more conveniently F;F, the
flowgraph obtained by concatenating F;, F, in the obvious
way by identifying the stop node of F with the start node
of F, (an example is given in Fig. 3(a). In an obvious
generalisation we may also define seq (£,...,F,) for n
flowgraphs.

The reader should note that completely formal
definitions of these operations may be given by specifying
the underlying digraphs (as was done in Ref. 4 for the
nesting operation).

In this paper we shall attach great importance to
‘depth’ of nesting. Suppose that in addition to the
situation in (2.2.i), y is a procedure node of F,, and F is
another flowgraph. Then the flowgraph obtained by
nesting F, on y in F, (F, on x) is the same as that obtained
by first nesting K, on y in F, and nesting the resulting
flowgraph on x in F, i.e.

(E.(F; on x)) (F on y) = F((E,(F on y))on x). (1)

Thus nesting is associative, and in this case we have two
levels of nesting. However, if y is (like x) a procedure node
of F, then we could nest £, on x, F, on y simultaneously
and arrive at the same result as either of the flowgraphs
in (1). The latter notation suggests two levels of nesting,
which does not correspond to the intuitive interpretation
here, which clearly views F, F, nested at the same (first)
level in K in stark contrast to the previous example. Any
possible confusion in this respect is avoided by using the
following notation.

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 331

GTOZ ‘2T BNy Lo [eA0Y 8y 79 S,MaLWo joyLeg 1S Te /6.0'S[eunolploxo- ju oo/ :dny Wwo.j papeo umod

http://comjnl.oxfordjournals.org/

N.E. FENTON AND R. W. WHITTY

Fy

then
(a) Fy(F;onx)

F,

(b) Seq (Fy, F3) (= Fy; Fp)

Figure 3

2.3. Definition and notation

If a flowgraph F has n (distinct) procedure nodes
Xy,...,x, and if F,...,F, are arbitrary flowgraphs then
the unique flowgraph formed by nesting (simultaneously)
FE on x; (i=1,...,n) is denoted

F(F onx;,...,F,onx,).

Thus in the previous example we would have to
have written F (F, on x, F, on y) instead of (F (F, on x))
(F; on y), since the latter now specifically implies that
y is a procedure node of F, and not of F.

2.4. Remark

(i) The operation of sequence may now be seen to be a
special case of (simultaneous) nesting, for if x; is the ith
node of the flowgraph P, (Fig. 1) then

s Bp) = Py(Fonx,,..

In Ref. 4 we did, for conciseness, use just the single
operation of nesting. In fact even P, may be derived by
continually nesting P,s on to P,s (as was done in Ref. 4
to make do with the fewest ‘base’ structures). Since this
again suggests levels of nesting which do not intuitively
exist we shall refrain from nesting any P, (k > 2)ona P,
in this paper.
(ii) For any flowgraph F with procedure node x,
F(P,onx)=F

seq(F,, F,onx,).

F,= has subflowgraph

Thus F, (x for F,) =

and more generally, if x,,...,x, are procedure nodes of

F then
F(P,onx,..

F(F, on x,, P, on x,, ..

LwPonx,)=F
., P, on x,) = F(F, on x,), etc.

(iii) The flowgraph P, is equal to seq(B,,. .., P,) — this
also follows directly from (i) and (ii) above - i.e. is just
a sequence of n procedures.

2.5. Definition

A subflowgraph* F’' = (G',a’,z’) of F=(G,a,z) is a
flowgraph for which G’ is a subgraph of G, and the only
entry into G’ from G\G’ is via a’ and the only exit from
G’ to G\G is via z’.

Note that if F, is nested in F then F, is a subflowgraph
of F. Moreover, any subflowgraph can be viewed as
having been obtained by nesting in this way. This leads
us to the notion of decomposition of subflowgraphs as an
inverse operation to nesting (composition). Thus the
decomposition of F, in F, (where F, is a subflowgraph of
E) is the flowgraph obtained by collapsing F, to a single
arc (x, z’), where z’ is the stop node of F, and x is a new
procedure node ‘replacing’ F,. The resulting flowgraph is
denoted F(x for F,). An example is given in Fig. 4.

As in the case of nesting, we shall use an analogous

* This definition of subflowgraph corresponds to the l-entry

subflowgraph in Ref. 4. We have dropped the ‘ 1-entry’ prefix here since
these are the only subflowgraphs considered here.

(=Dy)

Figure 4 x

332 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

GTOZ ‘2T snbny uo Aoy ayl 7 s,mewojoyreq 1S e /Hlo'seulnolploxo’ ufwoo//:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

AXIOMATIC APPROACH TO SOFTWARE METRICATION

is sequential with components Fy,F,,F3,F,

where

F,=

F;=

Fy= I>' =D})

(=D3)

Figure 5

notation for ‘simultaneous’ decomposition; explicitly, if
F contains edge-disjoint subflowgraphs F,...,F, then
these may be unambiguously decomposed in F simul-
taneously. The resulting flowgraph is denoted

F(x, for E, ..

We now have the necessary tools to tackle the question
of flowgraph structure.

., X, for E,).

2.6. Definition

A flowgraph F will be called sequential if there are
non-trivial subflowgraphs FK,F, of F for which
F = seq (F, E,) and non-sequential otherwise. It follows
easily that a given sequential flowgraph F may be written
uniquely as F =seq(F,...,F,) (k = 2) where each E is
non-sequential. In this case the Es are called the
components of F. An example of a sequential flowgraph
and its components is given in Fig. 5.

2.7. Definition

A flowgraph f will be called irreducible* if it is
non-sequential and contains no proper subflowgraph
(except for those of type B,).

* Because of the changed definition of subflowgraph from Ref. 4, the

‘irreducibles’ here are in a different class (in fact one which strictly
contains that of Ref. 4.)

If a flowgraph F is non-sequential then we can
unambiguously consider the set of maximal proper
subflowgraphs of F (# P). This set, say {F,...,F,}
(which will be empty if an only if F is irreducible) is
uniquely defined, the Fs being edge-disjoint (again, see
[4]). Thus again we shall in this case call the Es the
components of F (see Fig. 6 for an example).

Thus any flowgraph F, which is not irreducible, has a
uniquely defined non-empty set of components
{E,...,F.},saywhere F = seq(F,...,F,)inthecase where
F is sequential and F,...,F, are the maximal proper
subflowgraphs of F otherwise. In what follows we shall
see that a flowgraph’s ‘structure’ is uniquely determined
by recursive decomposition of its components. Before
formally defining this we present the most general
definition of structuredness.

2.8. Definition

Let & be a family of irreducible flowgraphs. The class of
&-graphs is defined inductively by the following.

(i) Each member of & is an &-graph (called a basic
& -graph).

(ii) If K, F, are ¥-graphs and if x is a procedure node
of F then EK(F, on x) is an &-graph (closure under
composition) and seq (¥, F;,) is an &-graph (closure under
sequence).

Note that F(x, for F,, x, for F,) =

is non-sequential with components
(i.e. maximal proper subflowgraphs)

Fy= Fy=

Xy X2 (=Dy)

Figure 6

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

333

GTOZ ‘2T BNy Lo [eA0Y 8y 79 S,MaLWo joyLeg 1S Te /6.0'S[eunolploxo- ju oo/ :dny Wwo.j papeo umod

http://comjnl.oxfordjournals.org/

N.E. FENTON AND R. W. WHITTY

(iii) No flowgraph is an &-graph unless it can be
obtained by a finite number of applications of (i) and (ii).

The above definition is equivalent to the one in Ref. 4;
if the flowgraph P, e & then closure under sequence is a
special case of closure under composition (Remark 2.4).
The reason why we restrict the definition to families of
irreducibles & is well documented in Ref. 4, where
straightforward algorithms for determining whether an
arbitrary flowgraph is an &-graph are also given. This is
a very elegant approach to structuredness since it is
enough to specify the family & in order to characterise
various notions of structuredness found in the literature.
Thus for example if we take &2 = {P,, D,, D}, D,, D,}
the & P-graphs correspond to the usual interpretation of
the ‘ D-structured’ programs, although Prather has for
simplicity omitted D; and D,. More natural families to
consider are the families %, for each integer n > 0, where

&, = {F:Fis an irreducible with < n predicate nodes}.

In the important case where we restrict ourselves to
binary predicates, the set &, is the same as & 2 above with
the addition of D,, the so-called ‘exit from middle’ loop
discussed at length in Ref. 9. Our derivation of %, here
seems to go some way to agreeing with Soloway, Bonar
and Ehrlich, who have found no justification (on
cognitive grounds) for the continued omission of D, in
the definition of structured programs and more import-
antly of structured languages. In fact our concise
definition of structuredness emphasises the ambiguity
and (at times) total arbitrariness in the literature about
‘ D-structuredness’. The real power of our general
approach will be seen when we wish to analyse a
program’s structure in order to metricate. For the
purposes of metrication it is rather unsatisfactory if a
given flowgraph cannot be metricated simply because it
does not lie in a particular class of &-graphs for some
arbitrarily chosen family & ; we are interested in metrics
which are defined on all flowgraphs. To this end we note
that every flowgraph is an %, -graph for suitably large n,
and moreover if ©
Lo = U Sn

n=0

then every flowgraph is an & -graph, since &, is just
the family of all irreducibles. It was noted in Ref. 4 that
every flowgraph has a uniquely defined ‘irreducible
hierarchy’, i.e. explicit hierarchical description in terms
of & -graphs. If Fis an &-graph then each irreducible
in this hierarchy is a basic &-graph. In Ref. 8 Prather
implicitly assumes a knowledge of this hierarchy for his
& D-graphs in order to define metrics on &P-graphs.
Similarly, to define metrics on all flowgraphs we will need
to know in general exactly how to derive the irreducible
hierarchy. Using the notation and definitions introduced
in this section we are now able to provide a simple and
elegant recursive procedure for this.

Procedure Tree (F)

{ returns a tree T for a given flowgraph F. }
The nodes of T are themselves flowgraphs
begin
if F is irreducible then T is a single node, F
else begin
Let F,...,F, be the components of F;
F:=F(x, for F,...,x; for F,) for identifiers
X1y ey Xis

root (T): = F;
subtrees of root (T') are Tree (F), ..., Tree ()
end {else}

end

It follows easily from earlier remarks that each node of
Tree (F)is either a P, (for some k > 2) or is an irreducible.
Each occurrence of a P, has k successor nodes (each of
which is an irreducible, so that no ambiguity about
‘nesting in sequences’ occurs), meaning that at this point
in the decomposition hierarchy there are k flowgraphs
(one for each node) in sequence. Each occurrence of an
irreducible F’ means that each successor node was
simultaneously nested on to F’ at this point in the
hierarchy. Figures 7 and 8 each show a flowgraph F and
its irreducible hierarchy Tree (F), together with the
derivation of the ‘top-down’ structure of F derived from
Tree (F).

If & is the set of irreducibles appearing in the Tree (F),
then & is the smallest family for which Fis an &-graph.
Thus, for example, in Fig. 8 the family of irreducibles
contains a 2-predicate node irreducible C, which means
that Fis not an %,-graph although it is an %,-graph. We
also observe that the leaves of Tree (F) are always the set
of irreducible subflowgraphs of F. An algorithm which
continually decomposed irreducible subflowgraphs of F
(as is given in Ref. 4) would effectively be reading the
Tree (F) ‘upwards’.

3. THE AXIOMS FOR METRICATION

The irreducible hierarchy is a definitive objective
catalogue of the structure of a flowgraph. Notions such
as size, type, frequency, depth/level of nesting of the
irreducibles should all contribute to aspects of the
structural complexity, and all of these notions are
captured here. The irreducible flowgraphs are of course
the ‘atomic’ structures in this analysis; it would be rash
at this stage to assume that anything other than subjective
‘complexity’ metrics could be imposed on them
(although we return to this issue in Section 4). However,
we are interested in the minimal amount of subjectivity
required for complete metrication (i.e. metrication of all
flowgraphs, at least within a given class); in the light of
the above analysis, once the complexity of the irreducibles
is known, together with how complexity is affected by
sequence and nesting (these represent the subjectivity),
then the complexity of an arbitrary flowgraph should
be uniquely determined with respect to these from the
irreducible hierarchy.
Formally, let us assume that

m: ¥ - R

is some predefined non-negative real-valued function on
a family of irreducibles . We wish to extend the function
m to the class of all ¥-graphs. Our claim is that if m is
indeed a ‘complexity metric’ then

(i) the complexity m of a sequential flowgraph should
be uniquely determined by the complexities of the
components, and

(i) the complexity of a non-sequential flowgraph
should be uniquely determined by the complexities of the
components and the complexity of the flowgraph with all
components decomposed.

334 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

GTOZ ‘2T NNy Lo [eA0Y 8y 79 S,MaWo joyLeg 1S Te /6.0'S[euIno[ploxo- ju oo/ :dny Wwo.j papeo umod

http://comjnl.oxfordjournals.org/

AXIOMATIC APPROACH TO SOFTWARE METRICATION

Thus,
F=PA; D,
= B; Dy(F, on x,, B, on x)

Tree (F)

P,

P,

= B; Dy((D,; D,; B; D,) on X;; (D3; B) on Xg)
= P; D\((Dy(D, on x,); Dy; By; D,) on x,; (Dy(D, on x,); P,) on x,)

Figure 7

Specifically, we are laying down the following axioms
for m

Axiom I (sequence axiom). For each n = 1,2,. . .there
is a function g,:R% > R*
such that m(seq (F, ..., F,)) = g,(m(F),. .
and

m(Fy))

g.[Rf=g, for k=1,...,n

(meaning restriction to R* considered as a subspace of R”,
O e.g.

gn(m(R), ..., m(E),0,...,0) = gy(m(F), ..., m(F,)))

Axiom 2 (nesting axiom). For each irreducible F with
procedure nodes x,, ..., x, say, there is a function

hp: R o RY
such that for any flowgraphs F,...,F,

m(F(Ff, on x,....,F, on x,))

= hp(m(F), m(F), ..., m(F,)).

Itnow follows from the definition of &#-graphs that once
m(F) is defined for each Fe % and once the g, and A
functions of the axioms are known, then m(F) is uniquely
defined for each %-graph F by considering the
decomposition hierarchy of F with respect to <. In
particular, if ¥ = &, then m(F) is uniquely defined for
any flowgraph F. Thus to define a metric m over & we
will require only

definition of m(F) for each F M. 1
definition of g, forn 1,2,... M. 2)
definition of A for each F. M. 3)

Although Prather has not considered axioms like those
above in his scheme, it is clear that they are implicitly
assumed throughout his work.

A specific consequence of Axiom 2 is a restriction on
the nature of 4 once m(F) is defined, for if we take F, = P,
(i=1,...,n) then by remark 2.4(ii), we obtain:

Axiom 2(a). Each of the functions A, satisfies

hp(m(F), m(R), ..., m(P,)) = m(F).

3.1. Examples of g and A functions

(i) A simple but uninteresting example of the g functions
is obtained by taking g, = ¢ for each n, where c is a
non-negative constant. In the case of h functions, axiom
2(a) ensures a restriction on the type of constant functions
allowable, but we could take hp = m(F) for each Fe &.
(ii) Interesting examples of g functions are
n
g, = X m(F) foreachn
i=1
8&» = max (m(F),...,m(F,)) foreachn

However, g, = min (m(F),.
e.g. if m(F) > 0 then

8:(m(F),0) = C < m(F) = g,(m(F))
which contradicts

..,m(F,)) is invalid since,

&[IR =g,
(iii) An interesting example for the A functions is
= m(F).max (m(F), ..., m(F,))

Note however that

e =m(®). (£ m(e)

is invalid generally because axiom 2(a) would then have
to satisfy

m(F) = m(F).(£ m(B)) = n.m(E).m(P,),

i.e. m(P) = 1/n for each n, which is impossible since
m(P,) is constant. The ‘next best’ thing we can do here
is to take

n
he=m(B). (£ mi))
N \jm1
This does satisfy the axioms.
Axioms 1 and 2 are of course only part of the solution
since they give no indication of how to define the g and
h functions (nor of course the function m for the

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 335

GTOZ ‘2T BNy Lo [eA0Y 8y 79 S,MaLWo joyLeg 1S Te /6.0'S[eunolploxo- ju oo/ :dny Wwo.j papeo umod

http://comjnl.oxfordjournals.org/

N.E. FENTON AND R. W. WHITTY

irreducibles). Certain aspects of complexity however
suggest intuitive upper and lower bounds for the g and
h functions; thus it is natural to suggest that a general
axiom scheme for m over & should have the additional
axioms:

Axiom 3. For each n, there are functions glower, gupper.
R"™ - R* for which

lower upper
&n" " S 8p S RPPE.

Axiom 4. For each Fe %, there are functions hlower,
hyprer: Rr+1 , R+ for which

h;gwer < hF < h‘};pper.

These two axioms say absolutely nothing more than
axioms 1 and 2 unless we give specific functions for the
upper and lower bounds, since we could assume

glnower - h};(‘)wer =0
gupper — pupper — o, in each case.

So a specific axiom scheme for m with respect to & is a
general axiom scheme in which axioms 3 and 4 have
specific functions for the upper and lower bounds. Before
considering non-trivial examples (like the one above) we
have the following.

3.1. Theorem

Let m,,...,m, be metrics satisfying a specific axiom
scheme with respect to . Then any positive weighted
linear combination of these metrics also satisfies the
specific axiom scheme.
Proof. A positive weighted linear combination is a
metric
t

m=3Y a;m,
i=1

where the a;s are constants for which
t
2 ai = 1
i=1
and each g; > 0. Thus for each Fe & we define

m(F) = amy(F)

and the g and h functions are similar sums of the
respective g and / functions for the m;s. So, for example,
if gt, is the g function for m, then

t
8n = z a; g5
=1
is the g function for m. Now, for each i,
BT S gn S &P
thus 48" < a;8;, < a; ghPre,

whence
t t

1 =
g™ = (Z a;)gw"e" <

)
a;8n
i=1 i=1

i
= g, <(Z a)giprer = gove,
-

hence g, satisfies Axiom 3. A similar argument is used for
Axiom 4.

A weaker version of the theorem above is given by

336 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

Prather in Ref. 8. The theorem will have important
ramifications when we come to combine various types of
metric in an attempt to achieve more general measures of
complexity.

3.2. Examples of specific axiom schemes
(1) Let ¥ ={P,D,,D,}
For Axiom 3 let glower = if)} m(F;) guprer = oo
then the axiom reads
£ m(E) < miseq (K., F,)) <eo
For Axiom 4 we need only consider the irreducibles

D,, D, (these correspond respectively to if « then x, else
X,, while a do x)

(@) taking hR¥er = 1+m(F)+m(F), hgprer =
2Am(R)+m(F)) yields
1+m(B)+m(F) < m(D\(F on x,F on Xx,))

< 2(m(F)+m(F,))
ie.
1+m(F)+m(F) < m(if o then F else F,)
< 2(m(FK)+m(F,))
(b) taking hlg¥er = 14+m(F), hyprer = 2m(F,) yields
1+m(F) < m(Dy(F on x,)) <2m(F)
ie. 1+m(F) < m(whileado F) < 2 m(EF).

The specific axiom scheme above is precisely the axiom
scheme which Prather has proposed for ‘ D-structured’
flowgraphs, with the exception (as already noted) that our
axioms 1 and 2 appear to have been only implicitly
assumed throughout. There are a number of observations
we wish to make regarding axiom 3, which is the most
contentious here. First, no attempt has been made to set
a finite upper bound on sequence complexity, which
seems sad since surely this is the concept that is most
easily dealt with at a cognitive level. Prather does point
out that all ‘reasonable’ metrics ought to satisfy
additivity of sequence (i.e. actually equal the lower
bound) and hence implies that his axiom can become as
strong as possible with an upper bound equal to the lower
bound. We are of the opinion that this may be a
reasonable assumption for metrics of global complexity,
since this does correspond to intuitive notions. In certain
cases, however, the summation may be a more reasonable
upper bound than lower bound, particularly for measures
reflecting aspects of local complexity, where a more
realistic lower bound for sequence would be the
maximum of the component complexities. In fact all
examples of metrics considered in this paper will satisfy
either

miseq (E, ...) = % m(E) *

or

m(seq (£, ..., F,) = max (m(F), ..., m(F,)).

Prather has shown that an example of a metric which
satisfies the axiom scheme (3.2.1) is McCabe’s cyclomatic
complexity,” which also meets the lower bound (*) for

GTOZ ‘2T BNy Lo [eA0Y 8y 79 S,MaLWo joyLeg 1S Te /6.0'S[eunolploxo- ju oo/ :dny Wwo.j papeo umod

http://comjnl.oxfordjournals.org/

AXIOMATIC APPROACH TO SOFTWARE METRICATION

sequence. Halstead’s metric of program volume® appears
to satisfy the axioms in all but certain ‘esoteric’ cases, but
in general the lower bound for sequence is not met, which
would eliminate this metric for consideration within an
axiom scheme where additivity of sequence was an upper
bound. Prather’s own metric u satisfies the axiom scheme.
In accordance with our earlier discussion this metric may
be (equivalently) defined by:

M. 1) u(R) =1, (D,) =pu(D,)=2 (Note: P corre-
sponds to Prather’s ‘simple statement’)

(M.2) u(seq(F,...,) = T u(E) for each n (g,

function)

(M.3) () w(D(F onx, F
(M(E), u(F)) (hp, function)

(i) u(Dy (F, on x;)) = u(D;) () (hp, function)

On the basis of this definition it is routine to check that
u satisfies the specific axiom scheme 3.2.i. Although it is
only defined for a small (albeit significant) family %, the
metric 4 appears to be a far more satisfactory metric than
McCabe’s for reflecting structural complexity. In
particular it reflects the multiplicative effect that nesting
intuitively contributes towards complexity. As with any
of the subjective ingredients of a metric (i.e. the
statements M. 1, M. 2, M. 3) there are grounds for
questioning the legitimacy in certain circumstances. For
example, the values u(D,), u(D,) (=2) appear relatively
low in relation to u(P,) = 1. In particular, we find that
u(P,) = nfor each n, suggesting that u(D,), u(D,) are less
complex than any sequence of > 3 simple statements. In
general, for any metric m the most effective way to assign
a value to m(F) for an irreducible F once m(P,) is known
will be to ‘assess” how many sequential statements are
needed in order to equal the perceived complexity of F
(i.e. to assess what value of n is P, closest in complexity
to F). However, this problem is perhaps more suited to
cognitive psychologists than to computer scientists, and
it is doubtful if there will ever be universal agreement,
even if the aspect of complexity in question is clearly
defined.

The main drawback of u, and indeed Prather’s axioms,
is the limited class of flowgraphs on which they are
defined. This problem is now easily overcome with our
theory. We may extend Prather’s axioms and metric y to
the most general of flowgraphs, namely the &, -graphs.

3.2.ii. A specific axiom scheme for &,

on x,)) = u(D,)max

By axiom 3
n
X m(E) < m(seq(F, ..., F)) <o
=1

By axiom 4 for each Fe¥,, with procedure nodes
Xis ey Xp
max (m(F),m(R), ...,m(F,)) < m(F(F, on x,,...,
n
Foon x) < m)(£ mie)

i=1

higwer = max (m(F), m(R), ..., m(F,))
v =m(e)(£ m(E)).

=1

As already discussed, variations on this axiom scheme
will be considered in which axiom 3 is changed. In
particular we consider:

3.2.ii. 4 specific axiom scheme for &,

For axiom 3 max (m(F),...,m(F,)) < m(seq
(5,...,F)) <oo

For axiom 4 as for 3.2.ii

3.2.iv. A specific axiom scheme for &,

For axiom 3 max (m(F),...,m(E,)) < m(seq

n
(F,....F)) < Zlm(E)
i-
For axiom 4 as for 3.2.ii

Scheme 3.2.i is clearly an extension of Prather’s
scheme. Scheme 3.2.ii is weaker in the sense that it
implies scheme 3.2.ii but has a more realistic lower bound
for axiom 3. Scheme 3.2.iv retains this lower bound but
imposes the additive upper bound, which we feel is more
consistent with the upper bound of axiom 4.

A metric 4’ which extends 4 to the class of &, -graphs
is now given by:

(M. 1)Foreach Fe¥,,, u'(F)=n+1

where 7 = number of predicate nodes of F

(M. 2) ((seq(E, ..., ;) = T p/(F) for each n(g,)

M.3) W (F(F, on x,...,E, on x,))=u(F)ymax
(& (B),....,u'(F,)) foreach Fe Sy, (hp).

It is routine to check that x4’ is a metric satisfying the
axiom scheme 3.2.ii (and also 3.2.iii and 3.2.iv), which
extends u. We do note how axiom 2.a is established:

W(EFP, on x,,...,B on x,))
=g (F)ymax (W'(R), ..., ' (R))
=p'(F)1
= y'(F) as required.

3.4. Example
For the flowgraph F in Fig. 8, u'(F) = 8.

The values of y'(F) for each Fe &, (defined in M. 1) are
subject to the same criticisms as we noted for the subset
already defined for u. Other interesting metrics which
attempt to overcome some of these problems may be
constructed by redefining M. 1 (and leaving M 2, M. 3
changed). For example we could define the metrics u”, A
based on

(@) M. 1 (for ") u'(F)=2" foreach Fe¥,
() M. 1 (for) A(F)=rn*+1 foreach Fe¥,,

(where in each case 7 = number of predicates in F).
Both these metrics are, like u’, extensions of u giving
greater (but differing) emphasis to ‘larger’ irreducibles.
For the flowgraph F of Fig. 8 we have u”(F) = 10, and
AMF) =12
Each of the metrics considered so far associates equal
complexity to irreducibles with the same number of

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 337

22

cpP129

GTOZ ‘2T BNy Lo [eA0Y 8y 79 S,MaLWo joyLeg 1S Te /6.0'S[eunolploxo- ju oo/ :dny Wwo.j papeo umod

http://comjnl.oxfordjournals.org/

N.E. FENTON AND R. W. WHITTY

Thus,

!

Tree (F)

D, C,

F = D,; (Cy(D, on x,, D, on x,))

Hence

W(F) = p/(D,)+ ' (CyD, on x,, D, on x,))
=2+4/(C,).(max (4'(D,), '(D,))
=2+3 (max (2, 2)) = 8

Figure 8

predicate nodes. While this enables us to give elegant and
simple statements for part M. 1 of the definition of such
metrics, this is in general an over-simplification of
complexity as perceived. The only definitive solution is to
consider each irreducible F on its own merit and to subject
it to exhaustive tests, like those done for the D-structures
in Ref. 9; even then the software community may not be
satisfied, since there will be the inevitable trade-off
between metrics being more * finely tuned’ and being more
difficult to calculate in practice.

Whatever their respective merits, metrics like x4/, u”, A
and other similar ones which the reader may easily
construct now for himself (and which are soon to be the
subject of large-scale industrial tests), appear to be
reasonable candidates for measures of global complexity.
Frequently however we are interested, for purposes of
quality control and the like, in ‘ worst-case’ complexity —
i.e. some kind of measure (possibly reflecting localised
complexity) which, if exceeded, lead to the rejection of the
software on the grounds that the measure is sufficiently
high for the whole software to be considered unacceptable.
A useful example of such a measure is the so-called
‘structural complexity metric’ x analysed (together with
its linguistic properties which are beyond the bounds of
this paper) in Ref. 3. Informally x(F) was defined for any
flowgraph F as being the smallest integer n for which F
is an %,-graph, or equivalently x(F) is the ‘size’ of the
largest irreducible in the decomposition hierarchy of F
(where size = number of predicate nodes). Thus F is
‘D-structured’ if and only if k(F) = 1; a value x(F) > 1
would merit rejection of F if our criteria for acceptance
of software were that it had to be ‘ D-structured’. A less
harsh procedure for quality control would isolate those
components of F which record maximal complexity and
seek to restructure these.

There are a number of objective comments that we can
make about x in the light of the axiomatic approach. First
we note that k may be equivalently defined by:

(M. 1) For each Fe%,
dicate nodes)

M. 2) k(seq (£, ..., F,)) = max (x(F), ..
M.3) k(F(F, on x,;...,F,
K(B); ..., k(Fy)).

From this definition of « it is clear that x satisfies the
specific axiom schemes 3.2.iii and 3.2.iv. In fact the g, and

hy functions actually meet the lower bounds.
In the example of Figure 7, k(F) = 2, indicating that

K(F)=mn (number of pre-

- K(Fy))
on Xx,)) = max(k(F),

a 2-predicate node irreducible (in this case a single
occurrence of C, in the hierarchy) is the obstruction to
¢ D-structuredness’.

It is worth emphasising at this point another merit of
the generalised approach to structuredness; many people
who believe in the notion of structured programming are
of the opinion that the D-structures are too limited a class
and that some constructs (notably a multi-exit loop for
control environments) ought to be added. In order to
accommodate this our definition of structuredness does
notchange atall — only the family % needs to be extended.
Thus to allow multi-exit loops we simply add, say to %,
the set of appropriate flowgraphs (in this case those whose
CGK-graph is an n-cycle with n exit arcs — see Ref. 4). An
analogous metric k¥’ to ¥ may now be defined by taking
k'(F)=1 for each F in our chosen family %, and
k’(F) = = as before for other irreducibles F. The rest of
the definition of x’ remains as for k. The resulting metric
x’ which again satisfies axiom schemes 3.2.iii and 3.2.iv
is such that for any flowgraph F, x’(F) = 1 if and only
if Fis an &-graph. A high value of x'(F) would suggest
a genuinely high degree of tangled logic contained in at
least one component of F.

Another metric which is in a similar category to «, x’
is the metric a, which records the maximum depth of
nesting. Specifically a may be defined by:

(M. 1) For each Fe¥%,,, F) =1,
M. 2) (seq (£, ..., F,)) = max (x(F), ..., a(F,)) (g4)

M. 3) (F(F, on x,,...,F,onx,)) =1+max («(F), ...,
o«(F,)) (hp for irreducibles F).

Again, it is routine to check that « satisfies the axiom
schemes 3.2.iii and 3.2.iv.

except oP)=0

4. FUTURE DEVELOPMENTS

In the light of the many different types of metrics
considered in this paper as measures of certain aspects of
structural complexity, it is impossible to exaggerate the
importance of theorem 3.1. Depending on which aspects
of complexity are deemed most important, suitable
metrics may eventually be derived by attaching appropri-
ate weights to any number of metrics (satisfying the
same specific axiom scheme) which are considered to be
significant. Ultimately the goal is towards a ‘general
complexity’ metric; the closer we get to this — and hence
the closer we get towards an understanding of what
genuinely contributes complexity — the more restrictive

333 THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986

GTOZ ‘2T snbny uo Aoy ayl 7 s,mewojoyreq 1S e /Hlo'seulnolploxo’ ufwoo//:dny woiy papeojumoq

http://comjnl.oxfordjournals.org/

AXIOMATIC APPROACH TO SOFTWARE METRICATION

we shall be able to make the upper and lower bounds of
our axiom schemes.

In the meantime we pose some specific problems which
are worthy of urgent attention.

(1) The metric x provides an example of a metric which
meets the lower bound functions in axiom schemes 3.2.iii
and 3.4.iv, most notably the lower bounds of axiom 4.
However, it has been noted (in 3.1.iii) that no metric can
possibly meet all the upper bounds of axiom 4 in these
schemes. This suggests a possible ‘relaxation’ of the
upper bounds in axiom 4 and hence more restrictive
axiom schemes. What kind of improved upper bounds
should we be looking for?

(2) We have assumed throughout that the axioms
represent the objective attributes for metrics and the
M. 1, M. 2 and M. 3 defined for a given metric represent
the wholly subjective attributes. In fact certain implicit
assumptions about the latter may well be incorporated as
extra axioms and thus lessen the apparent subjectivity. In
particular consider M. 1, i.e. the definition of m(F) for the
irreducibles F. In each example of a metric seen above we
have m(P,) = 1, suggesting quite reasonably that the
flowgraph P, corresponding to a simple statement should
be the basis for metrication in all cases. This represents
the best candidate for an extra axiom (in the absence of
linguistic considerations). In general, as we discover more
about the properties of other irreducible F, the possibility
of incorporating this knowledge into the axiom scheme
will increase. If, for example, it can be established that
an irreducible F is more ‘complex’ than another F’ (by
whatever means are available) then any metric m which
is expected to reflect this complexity ought to satisfy
m(F) > m(F’) as an axiom. This suggests that the most
urgent need for research in this area lies in the

REFERENCES

1. B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst and
L.T. Love, Measuring the psychological complexity of
software maintenance tasks with the Halstead and McCabe
metrics. [EEE Transactions, Software Engineering vol. SE-5
(2), 96-104 (1979).

2. W. H. Evangelist, Software complexity metric sensitivity to
program structuring rules. JSS 3, 231-243 (1983).

3. N. E. Fenton, The structural complexity of flowgraphs. In
Proceedings of the 5th International Conference on the
Theory and Applications of Graphs. Wiley, Chichester
(1985).

4. N. E. Fenton, R. W. Whitty and A. A. Kaposi, A general-
ised mathematical theory of structured programming.
Theoretical Computing Science 38 (1985).

5. M. H. Halstead, Elements of Software Science. Elsevier
North-Holland, Amsterdam (1975).

6. B. A. Kitchenham, Measurements of programming com-
plexity. ICL Technical Journal 298-316 (1981).

comparative evaluation of irreducibles’ complexity. We
already have some inroads on this problem; our more
restrictive definition of subflowgraph in this paper
(compared to Ref. 4) means that the class of irreducibles
here is larger than that in Ref. 4. The ‘extra’ irreducibles
here can be ‘unfolded’ (see Ref. 4) in terms of smaller
flowgraphs (namely those which had multi-entry points).
The operation of unfolding should eventually be treated
by axioms similar to those for sequence and nesting.

(3) Suppose F, F’ are complexity metrics with
m(F) < m(F’). Certain intuitive notions of complexity
suggest that a complex structure nested inside a simple
structure ought to be less complex overall than the same
simple structure nested inside the complex structure. In
the former the real complexity is localised (and hence can
be ‘controlled’ separately), while in the latter the real
complexity is global, and hence more difficult to control.
This notion suggests an additional axiom, namely

m(F) < m(F’) = m(F(F’ on y)).
Unfortunately, the metrics considered so far do not
satisfy this property since in each case we have

m(F(F’ on x))=m(F'(F on y)).
To define metrics which do have this property we shall
have to give greater ‘weight’ to the flowgraph in which
the nesting takes place. To achieve this, the 4 functions
defined in M. 2 could be, for example

m(F(F, on xy, ..., F, on x,) = m(F)®max (m(E), ...,
m(F,)), where b>1.
For such metrics we may require higher upper bounds in

axiom 4 of any specific axiom scheme (than in the
examples earlier).

on x)) <m(F’

7. T. J. McCabe, A complexity measure. IEEE Transactions,
SE-2, 308-320 (1976).

8. R. E. Prather. An axiomatic theory of software complexity
measure. The Computer Journal 27, 340-347 (1984).

9. E. Soloway, J. Bonar and K. Ehrlich, Cognitive strategies
and looping constructes: an empirical survey. Communi-
cations, ACM 26 (11), 853-860 (1983).

10. R. W. Whitty, N. E. Fenton and A. A. Kaposi, A rigorous
approach to structural analysis and metrication of
software. IEE Software and Microsystems 4 (1), 2-16 (1984).

11. R. W. Whitty, N. E. Fenton and A. A. Kaposi, Structured
programming: a tutorial guide. IEE Software and Micro-
systems 3 (3), 54-65 (1984).

12. M. R. Woodward,M. A. Henneland D. Hedley, A measure
of control flow complexity in program text. /EEE
Transactions SE-5 1, 45-50 (1979).

13. R. E. Prather and S. G. Giuleri, Decomposition of flow-
chart schemata. The Computer Journal 24 (3), 258-262

THE COMPUTER JOURNAL, VOL. 29, NO. 4, 1986 339

222

GTOZ ‘2T BNy Lo [eA0Y 8y 79 S,MaLWo joyLeg 1S Te /6.0'S[eunolploxo- ju oo/ :dny Wwo.j papeo umod

http://comjnl.oxfordjournals.org/

