
1 

Avoiding Probabilistic Reasoning Fallacies in 
Legal Practice using Bayesian Networks 

 

Norman Fenton and Martin Neil 
 

RADAR (Risk Assessment and Decision Analysis Research) 

School of Electronic Engineering and Computer Science 

Queen Mary (University of London) 

London E1 4NS 

 

and  

 

Agena Ltd  

www.agena.co.uk 

11 Main Street, Caldecote 

Cambridge CB23 7NU 

 

norman@eecs.qmul.ac.uk, martin@eecs.qmul.ac.uk 

 

29 June 2011 

 



2 

Abstract 

 

Probabilistic fallacies, such as the prosecutor fallacy, have been widely documented, 

yet these fallacies continue to occur in legal practice. This paper considers how best to 

avoid them, drawing on our experience as expert witnesses/advisors in recent trials. 

Although most fallacies are easily avoided by applying Bayes' Theorem, attempts to 

explain this to lawyers using the standard mathematical formulas seem doomed to 

failure. For simple arguments it is possible to explain common fallacies using purely 

visual presentation alternatives to the Bayes formulas (such as event probability trees) 

in ways that are fully understandable to lay people. However, as the evidence (and 

dependence between different evidence) becomes more complex, these visual 

approaches become infeasible. We show how Bayesian networks can be used to 

address the more complex arguments in such a way that it is not necessary to expose 

the underlying complex Bayesian computations. We demonstrate this new approach 

in explaining well known fallacies and a new fallacy that arose in a recent major 

murder trial. We also address the barriers to more widespread take-up of these 

methods within the legal profession, including the need to ‘believe’ the correctness of 

Bayesian calculations and the common reluctance to consider subjective prior 

probabilities.  
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1 Introduction 
 

The issue of probabilistic reasoning fallacies in legal practice (hereafter referred to 

simply as probabilistic fallacies) is one that has been well documented, being dealt 

with even in populist books such as [53][59]. An excellent overview of the most 

common fallacies and some of the more famous (primarily UK-based) cases in which 

they have occurred can be found in [10], with further explanatory material in [39]. 

Other works that deal in general terms with one or more fallacy include 

[19][20][37][38][45][52][65][70][73][81][89][90][97][99][108], while discussions of 

fallacies in the context of reasoning about evidence can be found in 

[8][9][17][38][51][68][80][84]. An extensive account of fallacies affecting dozens of 

US cases is provided in [74] while [48] describes four further relevant US cases. More 

detailed analyses of important individual cases include those of: Sally Clark (covered 

in [50][61][67][86]); O.J Simpson (covered in [55], [109]); Denis John Adams 

(covered in [33] [31]); nurse Lucia de B (covered in [83]); and Doheny and Adams 

(covered in [2] [94]). While all these particular cases have occurred within the last 20 

years, the phenomenon is by no means new. The Collins case [1], which is the subject 

of many of the above cited studies, took place in 1968 and some well-documented 

cases date back to the 19th century; these include the 1875 Belhaven and Stenton 

Peerage case (described in detail in [29]) and the 1894 Dreyfus case (described in 

detail in [71]).   

 

For the purposes of this paper an argument refers to any reasoned discussion 

presented as part of, or as commentary about, a legal case. Hence, we are talking 

about probabilistic fallacies occurring in arguments. There are other classes of 

fallacies that have occurred frequently in arguments, such as cognitive fallacies 

(including most notably confirmation bias [15][34][52]), but these are outside the 

scope of this paper. 

 

There is almost unanimity among the authors of the works cited in the first paragraph 

that a basic understanding of Bayesian probability is the key to avoiding probabilistic 

fallacies. Indeed, Bayesian reasoning is explicitly recommended in works such as [14] 

[39][49][51][38][56][64][90][95][96][100] [114], although there is less of a consensus 
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on whether or not experts are needed in court to present the results of all but the most 

basic Bayesian arguments [95][96].  

 

Yet, despite the many publications and other publicity surrounding them, and despite 

the consensus (within the probability and statistics community) on the means of 

understanding and avoiding them, probabilistic fallacies continue to proliferate legal 

arguments. Part of the problem can be attributed to a persistent attitude among some 

members of the legal profession that probability theory has no role to play at all in the 

courtroom; supporters of this viewpoint often point to a highly influential paper by 

Tribe in 1971 [113]. However, Tribe’s arguments have long been systematically 

demolished by the likes of Koehler [72] and Edwards [37], and more recently by 

Tillers and Gottfried [111]; in any case Tribe’s arguments in no way explain or justify 

the errors that have been made. Informed by our experience as expert witnesses on a 

number of recent high-profile trials (both criminal and civil) we seek to address this 

problem by proposing a different approach to detect, explain and avoid fallacies. Our 

approach, which can actually be applied to all types of reasoning about evidence, 

exploits the best aspects of Bayesian methods while avoiding the need for non-

mathematicians to understand mathematical formulas.  

 

Central to our approach is a recognition that members of the legal profession cannot 

be expected to follow even the simplest instance of Bayes Theorem in its formulaic 

representation. This explains why, even though many lawyers are aware of the 

fallacies, they struggle to understand and, hence, avoid them. Instead of continuing 

the struggle to pursuade non-mathematicians to understand mathematics we propose 

an alternative approach and demonstrate how it has already been applied with some 

effect on real cases.  

 

The paper is structured as follows.  

 

• In Section 2 we provide an overview of the most common fallacies within a 

new classification framework that is conceptually simpler than previous 

approaches. We also compare the formulaic and visual versions of Bayes 

theorem in explaining key fallacies like the prosecution fallacy. 
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• Section 3 identifies why Bayes theorem is not just the means of avoiding 

fallacies but also, paradoxically, the reason for their continued proliferation. 

Specifically, this is where we explain the limitations of using purely formulaic 

explanations. We explain how, in simple cases, alternative visual explanations 

such as event trees enable lay people to fully understand the result of a 

Bayesian calculation without any of the maths or formulas. In order to extend 

this method to accommodate more complex Bayesian calculations we 

integrate the event tree approach with Bayesian networks, explaining how the 

latter can be used in a way that is analogous to using an electronic calculator 

for long division.    

 

• Section 4 brings the various threads of the paper together by showing how our 

proposed approach has been used in practice.  

 

Although the paper addresses the issue of what we might reasonably expect of experts 

and juries in the context of probabilistic reasoning, it does not address this issue in 

any general way (a relevant comprehensive account of this can be found in [13]). 

 

The paper provides a number of original contributions: a classification of fallacies that 

is conceptually simpler than previous approaches; a new fallacy; and most 

importantly a new approach/method of fully exploiting Bayes in legal reasoning. 

Much of the material is drawn from our involvement in the R v Bellfield case [6] (a 

case resulting in the conviction of Levi Bellfield for the murders of Marsha 

McDonnell and Amnelie Delagrange and the attempted murder of Kate Sheedy). The 

proposal to use Bayesian networks for legal reasoning and evidence evaluation is by 

no means new (see, for example, [12][37][106]), but what is new is our approach to 

the way this kind of reasoning is presented.  

 

 

2 Some probabilistic fallacies  
 

2.1 From hypothesis to evidence and back: the transposed conditional  
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Probabilistic reasoning of legal evidence often boils down to the simple causal 

scenario shown in Figure 1: we start with some hypothesis H (such as the defendant 

was or was not present at the scene of the crime) and observe some evidence E (such 

as blood type at the scene of the crime does or does not match the defendant’s).  

 

H 
(hypothesis)

E
(evidence)

 
Figure 1 Causal view of evidence 

 

 

The probability of E given H, written P(E|H), is called the conditional probability. 

Knowing this conditional probability enables us to revise our belief about the 

probability of H if we observe E.   

 

Many of the most common fallacies of reasoning arise from a basic misunderstanding 

of conditional probability. An especially common example is to confuse: 

 

the probability of a piece of evidence (E) given a  hypothesis (H) 

with  

the probability of a hypothesis (H) given the evidence (E).  

 

In other words P(E|H) is confused with P(H|E). This is often referred to as the fallacy 

of the transposed conditional [38]. As a classic example, suppose that blood type 

matching the defendant’s is found at the scene of the crime (this is E) and that this 

blood type is found in approximately one in every thousand people.  Then the 

statement: 

 

the probability of this evidence given the defendant is not the source is 1 in 

1000  

(i.e.  P(E|H)=1/1000 where we are assuming H is  the statement ‘defendant is 

not the source’) 
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is logically and mathematically correct.  However, it is a fallacy to conclude that: 

 

the probability the defendant is not the source given this evidence is 1 in 1000  

(i.e. P(H|E)=1/1000) 

 
In this context, the transposed conditional fallacy is sometimes also called the 

prosecutor’s fallacy, because the claim generally exaggerates the prosecutor’s case; it 

suggests that there is an equally small probability that the defendant is not the source 

as there is the probability of observing the match in a random person. 

 

A definitive explanation of the fallacy is provided by Bayes Theorem. However, as 

explained in [112] the usual Bayes formulation is notoriously difficult for lay people 

to grasp. It is therefore instructive (and important for what follows) to consider first 

an alternative very simple and informal visual explanation. 

 

First suppose (Figure 2) that, in the absence of any other evidence, there are 10,000 

people who could potentially have been the source of the blood (indeed, it is 

important to note that the failure to take account of the size of the potential source 

population is an instance of another fallacy, called the base-rate fallacy [69]). 
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Imagine 10,000
people who could 
potentially have
committed the
crime

One of whom
is the actual 
source

But about 10 
out of the other 9,999
people
have the matching
blood type

Actual source

Not source but 
matching type

Non matching 
person

 

Figure 2 The potential source population 
Of course only one is the actual source. But, because of the 1 in 1000 blood match 

probability, about 10 out of the other 9,999 people have the matching blood type.  

 

This means there is a probability of 10/11 (i.e. about 91% chance) that a person with 

the matching blood type is not the source. In other words P(H|E) is 0.91 (very 

likely) and not 1 in a thousand (highly unlikely) as claimed by the prosecution. 

 

In contrast to the above visual explanation of the fallacy, the calculations can be done 

formally with Bayes theorem, which provides a simple formula for updating our prior 

belief about H in the light of observing E. In other words Bayes calculates P(H|E) in 

terms of P(E|H). Specifically:   

 

( | ) ( ) ( | ) ( )( | )
( ) ( | ) ( ) ( | ) ( )

P E H P H P E H P HP H E
P E E H P H E notH P notH

= =
+

 

 

So, using the same assumptions as above with 10,000 potential suspects and no other 

evidence, the prior P(H) is equal to 9,999/10,000. We know that P(E|H)=1/1000. For 

the denominator of the equation we also need to know P(E|not H) and P(not H). Let 

us assume that if the defendant is the source then the blood will certainly match so 
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P(E|not H)=1. Also, since P(H)=9,999/10,000 it follows that P(not H)= 1/10,000.  

Substituting these values into Bayes Theorem yields 

 

1 9,999
9,9991000 10,000( | ) 0.911 9,999 1 10,9991*

1000 10,000 10,000

P H E
⋅

= = ≈
⋅ +

 

 

While mathematicians and statisticians inevitably prefer the conciseness of the 

formulaic approach it turns out that most lay people simply fail to understand or even 

believe the result when presented in this way, as demonstrated empirically in [24] 

Although some authors, such as [25][53], claim it is the use of abstract probabilities 

and formulas, rather than the underlying concept, that acts as a barrier to 

understanding, as soon as we introduce more complexity into the problem, (such as a 

second piece of evidence) there is no approach that will enable non-mathematicians to 

understand (let alone perform) the calculations properly.   

 

 

2.2 Many fallacies, but a unifying framework 
 

The previous particular example of a transposed conditional fallacy is just one of a 

class of such fallacies that have been observed in arguments. In the context of DNA 

evidence Koehler [74] defined a range of such fallacies by considering the following 

chain of reasoning: 

 
Match report  True Match Source Perpetrator 

 
The direction of reasoning here is not causal (as in Figure 1) but deductive. 

Specifically, a reported match is suggestive of a true match, which in turn is 

suggestive that the defendant is the source. This in turn is suggestive that the 

defendant is the actual perpetrator (i.e. is guilty of the crime).  Of course, it is 

erroneous to consider any parts of this chain of deductions as following automatically. 

Errors in the DNA typing process can result in a reported match where there is no true 

match [110]. A true match can be coincidental if more than one member of the 
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population shares the DNA features recorded in the sample; and finally even if the 

defendant was the source he/she may not be the perpetrator since there may be an 

innocent reason for their presence at the crime scene. 

 

Koehler’s analysis and classification of fallacies can be generalised to apply to most 

types of evidence by considering the causal chain of evidence introduced in Figure 3. 

 

A:
Defendant
committed

the 
crime

B:
Evidence from
crime directly

links to 
defendant

C:
Evidence

from defendant
matches evidence

from crime

D:
Test determines

evidence
from defendant

matches evidence
from crime 

 

Figure 3 Causal chain of evidence 

 

We will show that this schema allows us to classify fallacies of reasoning that go 

beyond Koehler’s set. 

  

In this schema we assume that evidence could include such diverse notions as: 

 

• anything revealing a DNA trace (such as semen, saliva, or hair) 

• a footprint 

• a photographic image from the crime scene 

• an eye witness statement (including even a statement from the defendant). 

 

For example, if the defendant committed the crime (A) then the evidence may be a 

CCTV image showing the defendant’s car at the scene (B). The image may be 

sufficient to determine that the defendant’s car is a match for the one in the CCTV 

image (C). Finally, experts may determine from their analyses of the CCTV image 

that it matches the defendant’s car (D).    

 

Koehler’s approach is heavily dependent on the notion ‘frequency of the matching 

traits’, denoted F(traits). This is sometimes also referred to as the ‘random match 

probability’. In our causal framework F(traits) is equivalent to the more formally 

defined  
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P(C | not B) 

 

i.e  the probability that a person NOT involved in the crime, coincidentally provides 

evidence that matches. 

 

Example: In the case [6] the prosecution relied heavily on a blurred CCTV 

still image of a car at the scene of one of the murders that was claimed to 

match the defendant’s. Image analyst experts were able to reveal the type of 

the car and 3 of the 7 digits on the number plate. Hence P(C | not B) was 

determined by the number of vehicles of the same type whose number plates 

matched in those 3 digits. 

 

With this causal framework, we can characterise a range of different common 

fallacies resulting from a misunderstanding of conditional probability, thus extending 

the work of Koehler (using Koehler’s terminology wherever possible). Full details are 

provided in an earlier version of this work [42], but the following are especially 

important examples: 

 

1. ‘Source probability error’: This is where we equate P(C | not B) with P(not B | 

C).  Many authors (see, for example [19][82][97][99]) refer to this particular 

error as the prosecutor fallacy.  

 

2. ‘Ultimate issue error’ This is where we equate P(C | not B) with P(not A | C). 

This too has been referred to as the Prosecutor fallacy [108]: it goes beyond 

the source probability error because it can be thought of as compounding that 

error with the additional incorrect assumption that P(A) is equal to P(B). 

 

3. P(Another Match) Error: This is the fallacy of equating the value P(C | not B) 

with the probability (let us call it q) that at least one innocent member of the 

population has matching evidence. The effect of this fallacy is usually to 

grossly exaggerate the value of the evidence C. For example, Koehler [74] 

cites the case in which DNA evidence was such that P(C | not B) = 

1/705,000,000, but where the expert concluded that the probability that 
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another person (other than the defendant) having the matching DNA feature 

must also be equal to 1/705,000,000. In fact, even if the ‘rest of the 

population’ was restricted to, say, 1,000,000, the probability of at least one of 

these people having the matching features is equal to: 

 

1 – (1 – 1/705,000,000)1,000,000  

 

and this number is approximately 1 in 714, not 1 in 705,000,000 as claimed. 

 

Where the evidence B is DNA evidence, the match probability P(C | not B) can be 

very low (millions or even billions to one), which means that the impact of this class 

of fallacies can be massive since the implication is that this very low match 

probability is equivalent to the probability of innocence.  

 

 

2.3 Avoiding fallacies using the likelihood ratio (advantages and 
disadvantages) 
 

What is common across all of the fallacies described above and in the Appendix of 

[42] is that ultimately the true utility of a piece of evidence is presented in a 

misleading way – the utility of the evidence is either exaggerated (such as in the 

prosecutor fallacy) or underestimated (such as in the defendant fallacy). Yet there is a 

simple probabilistic measure of the utility of evidence, called the likelihood ratio.  

For any piece of evidence E, the likelihood ratio of E is the probability of seeing that 

evidence if the defendant is guilty divided by the probability of seeing that evidence if 

the defendant is not guilty. It follows directly from Bayes Theorem that if the 

likelihood ratio is bigger than 1 then the evidence increases the probability of guilt 

(with higher values leading to higher probability of guilt) while if it is less than 1 it 

decreases the probability of guilt (and the closer it gets to zero the lower the 

probability of guilt). An equivalent form of Bayes Theorem (called the ‘odds’ version 

of Bayes) tells us that the posterior odds of guilt are the prior odds times the 

likelihood ratio. If the likelihood ratio is equal to or close to 1 then E offers no real 

value at all since it neither increases nor decreases the probability of guilt.  
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Evett and others have argued [38] that many of the fallacies are easily avoided by 

focusing on the likelihood ratio. Indeed, Evett’s crucial expert testimony in the appeal 

case of R v Barry George [5] (previously convicted of the murder of the TV presenter 

Gill Dando) focused on the fact that the forensic gunpowder evidence that had led to 

the original conviction actually had a likelihood ratio of about 1. This is because both 

P(E | Guilty) and P(E | not Guilty) were approximately equal to 0.01. Yet only P(E | 

not Guilty) had been presented at the original trial (a report of this can be found in 

[11]). 

Another advantage of using the likelihood ratio is that it removes one of the most 

commonly cited objections to Bayes Theorem, namely the obligation to consider a 

prior probability for a hypothesis like ‘guilty’ (i..e. we do not need to consider the 

prior for nodes like A or B in Figure 3). For example, in the prosecutor fallacy 

example above, we know that the probability of seeing that evidence if the defendant 

is not guilty is 1/1000 and the probability of seeing that evidence if the defendant is 

guilty is 1; this means the likelihood ratio is 1000 and hence, irrespective of the ‘prior 

odds’, the odds of guilt have increased by a factor of 1000 as a result of observing this 

evidence. Hence, the use of the likelihood ratio goes a long way toward allaying the 

natural concerns of lawyers who might otherwise instinctively reject a Bayesian 

argument on the grounds that it is intolerable to assume prior probabilities of guilt or 

innocence.  

While we strongly support the use of the likelihood ratio as a means of both avoiding 

fallacies and measuring the utility of evidence, in our experience lawyers and lay 

people often have similar problems understanding the likelihood ratio as they do 

understanding the formulaic presentation of Bayes. As we shall see in the next 

section, this problem becomes acute in the case of more complex arguments.  

 

 

3 The fallacies in practice: why Bayes hinders as much as 

helps 
 

3.1 The fallacies keep happening 
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The specific rulings on the prosecutor fallacy in the case of R v Deen (see [17]) and R 

v Doheny/Adams (see [3]) should have eliminated its occurrence from the courtroom. 

The same is true of the rulings in relation to the dependent evidence fallacy in the case 

of People vs Collins and Sally Clark. Indeed the Sally Clark case prompted the 

President of the Royal Statistical Society to publish an open letter to the Lord 

Chancellor regarding the use of statistical evidence in court cases [58] (we shall return 

to this letter in Section 3.2). 

Unfortunately these, and the other fallacies described in [42], continue to occur 

frequently. Moroever, in addition to the many examples cite in Section 1 and in [42], 

it is also important to note that one does not need an explicit statement of probability 

to fall foul of many of the fallacies. For example, a statement like: 

 

“the chances of finding this evidence in an innocent man are so small that you 

can safely disregard the possibility that this man is innocent” 

 

is a classic instance of the prosecution fallacy (see [39]). Indeed, based on examples 

such as these and our own experiences as expert witnesses, we believe the reported 

instances are merely the tip of the iceberg.  

For example, although this case has not yet been reported in the literature as such, in 

R v Bellfield 2007 [6] the prosecution opening contained instances of many of the 

fallacies described in Section 2, plus a number of new fallacies (one of which is 

described in Section 4 below). When our report [43] was presented by the defence to 

the prosecutor and judge, it was agreed that none of these fallacies could be repeated 

in the summing-up. Nethertheless, just days later in another murder case (R vs Mark 

Dixie, accused of murdering Sally-Anne Bowman) involving the same prosecuting 

QC a forensic scientist for the prosecution committed a blatant instance of the 

prosecutor fallacy, as reported by several newspapers on 12 Feb 2008: 

"Forensic scientist Julie-Ann Cornelius told the court the chances of DNA 

found on Sally Anne’s body not being from Dixie were a billion to one." 
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3.2 The problem with Bayesian explanations 
 

What makes the persistence of these fallacies perplexing to many statisticians and 

mathematicians is that all of them can be easily exposed using simple applications of 

Bayes Theorem and basic probability theory as shown in Section 2.   

Unfortunately, while simple examples of Bayes Theorem are easy for statisticians and 

for mathematically literate people to understand, the same is not true of the general 

public. Indeed, we believe that for many people – and this includes from our own 

experience highly intelligent barristers, judges and surgeons, any attempt to use 

Bayes theorem to explain a fallacy is completely hopeless. They simply switch-off at 

the sight of a formula and fail to follow the argument.   

 

Moreover, the situation is even more devastating when there are multiple pieces of 

possibly contradictory evidence and interdependencies between them. For example, 

there is a highly acclaimed half-page article by Good [56] that uses Bayes theorem 

with 3 pieces of related evidence to expose a fallacy in the OJ Simpson trial. Yet, 

because of its reliance on the formulaic presentation, this explanation was well 

beyond the understanding of our legal colleagues. Even more significant from a legal 

perspective was the landmark case of R vs Adams (discussed in [31] and [33]). 

Although Donelly [33] highlights the issue of the prosecutor fallacy, this fallacy was 

not an issue in court. The issue of interest in court was the use of Bayesian reasoning 

to combine the different conflicting pieces of evidence shown in Figure 4 (to put this 

in the context of Figure 3 the node “Adams Guilty” corresponds to node A while each 

of the other nodes corresponds to instances of node B). 
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Figure 4 Hypothesis and evidence in the case of R v Adams 

 

An example of part of the Bayesian calculations (using the likelihood ratio) required 

to perform this analysis are shown in Figure 5). While, again, this is simple for 

statisticians familiar with Bayes, arguments like this are well beyond the 

comprehensibility of most judges and barristers, let alone juries. 

 

 

 

Figure 5 Likelihood ratio calculation for Adams case taken from [9]. 

 
Yet, in court, the defence expert (Donelly) presented exactly such calculations, 

assuming a range of different scenarios, from first principles (although Donelly states 

in [33] that this was at the insistence of the defence QC and was not his own choice). 

The exercise was, not surprisingly, less than successful and the appeal judge ruled 

 

“The introduction of Bayes' theorem into a criminal trial plunges the jury 

into inappropriate and unnecessary realms of theory and complexity 

deflecting them from their proper task” 
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While this statement is something that we are generally sympathetic to, his 

subsequent statement is much more troubling: 

 

“The task of the jury is … to evaluate evidence and reach a conclusion not 

by means of a formula, mathematical or otherwise, but by the joint 

application of their individual common sense and knowledge of the world 

to the evidence before them” 

 

This statement characterises the major challenge we face. At an empirical level, the 

statement is deeply concerning because the extensive literature on fallacies discussed 

in Section 2 and in the Nobel prize-winning work of Kahneman and Tversky [69] 

confirms that lay people cannot be trusted to reach the proper conclusion when there 

is probabilistic evidence. Indeed, experts such as forensic scientists and lawyers, and 

even professional statisticians, cannot be trusted to reach the correct conclusions.  

 

Where we differ from some of the orthodoxy of the statistical community is that we 

believe there should never be any need for statisticians or anybody else to attempt to 

provide complex Bayesian arguments from first principles in court. In some respects 

this puts us at odds with the President of the Royal Statistical Society whose letter 

[58] (the background to which was described above) concluded: 

 

The Society urges you to take steps to ensure that statistical evidence is 

presented only by appropriately qualified statistical experts, as would be the 

case for any other form of expert evidence. 

The problem with such a recommendation is that it fails to address the real concerns 

that resulted from the Adams case, namely that statistical experts are not actually 

qualified to present their results to lawyers or juries in a way that is easily 

understandable. Moreover, although our view is consistent with that of Robertson 

and Vignaux [95][96] in that we agree that Bayesians should not be presenting their 

arguments in court, we do not agree that their solution (to train lawyers and juries to 

do the calculations themselves) is feasible. Our approach, rather, draws on the 

analogy of the electronic calculator for long division. 
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3.3 Bayes and the long division (calculator) analogy 

 
The point about a long division calculation is that, like a Bayes calculation, it is 

almost impossible to do it accurately by hand. Instead, it is accepted that we would 

use an electronic calculator. If somebody presented in court the result of a long 

division from a calculator you might, as a precaution,  check the result by running the 

same calculation in another calculator.  But you would certainly not expect the person 

to provide a first principles explanation of all the thousands of circuit level 

calculations that take place in his particular calculator in order to justify the result that 

was presented, especially if he also had to explain from first principles the fact that no 

completely accurate result was possible due to recurring decimals. Not only would 

that be unreasonable, but the jury would also surely fail to understand such an 

explanation. This might lead the judge to conclude (perfectly reasonably) that  

 

“The introduction of long division into a criminal trial plunges the jury 

into inappropriate and unnecessary realms of theory and complexity 

deflecting them from their proper task”.  

 

If, additionally, the judge were to conclude (as in the Adams case) that  

 

The task of the jury is “to evaluate evidence and reach a conclusion not 

by means of a formula, mathematical or otherwise, but by the joint 

application of their individual common sense and knowledge of the world 

to the evidence before them” 

 

then the long division result that was presented should be disregarded and members of 

the jury should be allowed to use common sense (and certainly not a calculator) to 

come up with their own result for the long division. Common sense would inevitably 

lead jury members to deduce different values and, based on the known difficulty of 

performing such calculations purely intuitively, these may be inaccurate.  
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While the above scenario seems ludicrous we claim it is precisely analogous of the 

expectations when Bayes theorem (rather than long division) has to be used. Our 

proposal is that there should be no more need to present Bayesian arguments from 

first principles than there should be a need to explain the underlying circuit 

calculations that take place in a calculator for the division function.  

 

This is because Bayesian analysis share the following properties of long division: 

 

1. Most people can understand and do it from scratch in very simple cases. 

When a very simple Bayesian argument is presented visually (as in Section 2) 

using concrete frequencies people not only generally understand it well [15], 

but they can construct their own correct simple calculations.  To emphasize 

this point, we have used both the formulaic and visual explanations presented 

in Section 2 to numerous lay people, including lawyers and barristers. 

Whereas they find it hard both to ‘believe’ and reconstruct the formulaic 

explanation, they inevitably understand the visual explanation.  

 

The particular visual explanation presented can actually be regarded as simply 

an animated version of an event tree (also called decision tree, probability tree 

or frequency tree) [101]. The equivalent event tree is shown in Figure 6. 

 

Possible suspects
10,000

So about 11 
have a positive 
match. 
But only 1 is
the actual 
source. 

Positive Match
1

Test negative
0

Positive Match
∼ 10

Test negative
∼ 9,989

100%

0%

1/1000

999/1000

1/10,000

9,999/10,000 Not the source
9,999

Actual source
1

1/10,000

9,999/10,000 Not the source
9,999

Actual source
1

 

Figure 6 Event/decision tree representationof Bayesian argument 
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To emphasize the impact of such alternative presentations of Bayes, we were 

recently involved in a medical negligence case [47] where it was necessary to 

quantify the risks of two alternative test pathways. Despite the statistical data 

available, neither side could provide a coherent argument for directly 

comparing the risks of the alternative pathways, until a surgeon (who was 

acting as an expert witness) claimed that Bayes Theorem provided the answer. 

The surgeon’s calculations were presented formulaically but neither the 

lawyers nor the other doctors involved could follow the argument. We were 

called in to check the surgeon’s Bayesian argument and to provide a user-

friendly explanation that could be easily understood by lawyers and doctors 

sufficiently well for them to argue it in court themselves. It was only when we 

presented the argument as an event tree that everything became clear. Once it 

‘clicked’ the QC and surgeons felt sufficiently comfortable with it to present it 

themselves in court. In this case, our intervention made the difference between 

the statistical evidence on risk being used and not being used.  

 
The important point about the visual explanations is not just that they enable 

lay people to do the simple Bayes calculations themselves, but they also 

provide confidence that the underlying Bayesian approach to conditional 

probability and evidence revision makes sense.  

 

Ideally, it would be nice if these easy-to-understand visual versions of 

Bayesian arguments were available in the case of multiple evidence with 

interdependencies. Unfortunately, in such cases these visual methods do not 

scale-up well. But that is even more true of the formulaic approach, as was 

clear from the Adams case above. And it is just as true for long division.  

 

2.  Scientists have developed algorithms for doing it in the general case: Think 

of the ‘general’ case as a causal network of related uncertain variables. In the 

simple case there are just two variables in the network as shown in Figure 1. 

But in the general case there may be many such variables as in Figure 4. Such 

networks are called Bayesian networks (BNs) and the general challenge is to 

compute the necessary Bayesian calculations to update probabilities when 

evidence is observed. In fact, no computationally efficient solution for BN 
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calculation is known that will work in all cases. However, a dramatic 

breakthrough in the late 1980s changed things. Researchers such as Lauritzen 

and Spiegelhalter [77] and Pearl [88] published algorithms that provided 

efficient calculation for a large class of BN models. The algorithms have 

indeed been tested and validated within the community and are described in 

sufficient detail for them to be implemented in computer software.  Note also 

that, as in the case of long division, the algorithms do not need to be 

understood by lay people.   

 

3. There are computers that implement the algorithms to acceptable degrees of 

accuracy. In fact, there are many commercial and free software tools that 

implement the calculation algorithms and provide visual editors for building 

BNs. See [46] for an extensive review. The algorithms and tools are now 

sufficiently mature that (with certain reasonable assumptions about what is 

allowed in the models) the same model running in a different tool will provide 

the same result. As with using a calculator for long division the accuracy of 

the result depends on the quality of the inputs and assumptions. For division 

we only have to decide what the numerator is and what the denominator is. 

For a BN we have to make assumptions about:  

 

• Which variables are dependent on which others (i.e. what is the 

topology of the BN) 

• What are the prior probabilities for each variable; for variables with 

parents this means agreeing the probability of each state conditioned 

on each combination of parent states. 

 

We believe that making these assumptions is typically not as onerous as has 

often been argued [46]. In fact, the assumptions are normally already implicit 

somewhere in the case material. Moreover, where there are very different prior 

assumptions (such as the contrast between the prosecution assumptions and 

the defence assumptions) in many cases, the prior assumptions turn out not to 

be very critical since the same broad conclusions follow from a wide-range of 

different assumptions; the technique for using a range of different assumptions 

is called sensitivity analysis (which is easily performed in a BN). For example, 
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Ward conducted a BN analysis of the Collins evidence [37], and found that, 

despite the fallacies committed at the trial, running the model with a wide 

range of different assumptions always led to a very high probability of guilt. In 

the medical case [47] described above we used the very different ‘priors’ of 

the claimant and the defence but for both the result came down firmly in 

favour of the claimant case. Also, one of the benefits of the BN approach is 

that all the assumptions are actually forced into the open.  

 

It is important to note that the notion of using BNs for legal reasoning is not new, 

although we may be the first to have used them to help lawyers understand the impact 

of key evidence in real trials. As discussed above, Edwards produced an outstanding 

paper on the subject in 1991 [37], while Kadane and Schum [68] used the approach 

retrospectively to analyse the evidence in the Sacco and Vanzetti case. Other 

important contributions have been made by Aitken and colleagues [12] and Taroni et 

al [106] whose book describes the potential for BNs in the context of forensic 

evidence; other work on BNs in the forensic evidence space includes 

[26][27][28][30][76][87]. We specifically used BNs to explain the jury fallacy in [45] 

and recommended more general use of BNs in legal reasoning – an idea taken up by a 

practicing barrister [65][66].  More generally, the idea of graphical, causal type 

models for reasoning about evidence dates back as far as 1913 [116], while other 

relevant modern approaches can be found in [21], [115].  

 

We recognise there are some challenging issues, which remain open research 

questions. The most important of these is the fact that the BN approach forces us to 

make assumptions that are simply not needed, such as the prior probability of state 

combinations that are impossible in practice, and (in some cases) the prior probability 

of nodes like ‘guilty’ which are not needed when the likelihood ratio is used.  

 

 

3.4 So how might a complex Bayesian argument be presented in 
court? 

 
The Bayesian approach is most relevant in cases where we need to combine different 

types of evidence, in particular where some evidence may be considered more 
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‘objective’ than other evidence. For example, it is accepted that evidence of a DNA 

match can be turned into a probability statement about the defence hypothesis as 

follows (for simplicity here we will assume that ‘not guilty’ is the same as ‘not the 

source of the DNA’): 

 

Probability (“DNA match” given “Defendant not guilty”) = 1 in 20 million  

 

where 1 in 20 million is the random match probability. Such a probability is 

considered to be ‘objective’ and ‘statistically sound’. However, courts are less likely 

to accept probabilities for more ‘subjective’ evidence. So if, for example, it was 

known that the defendant was not selected by the victim from an identification parade, 

then it would be considered contentious to make a statement like  

 

The probability (“identification failure” given “Defendant guilty”) = 1 in 10 

 

However, Bayesians argue that both of the statements are subjective probabilities (and 

of course in the Bayesian calculations there is no conceptual difference between 

them).  It is beyond the scope of this paper to engage in the debate about when 

evidence is ‘sufficiently statistically sound’ (many book and papers have been written 

about this topic and a recent ruling suggesting that DNA is more statistically sound 

that other types of evidence  [7] has generated fierce and well argued opposition [20] 

[92] [93]). However, note that the difference in the above two statements, with respect 

to their level of ‘statistical soundness’, is by no means as clear-cut as some may 

believe.  In practice, there is great uncertainty – and a lot of subjective judgement 

involved – in arriving at a DNA match probability. For example, as described in [23] 

and [40], DNA experts in the UK and the USA report very different random match 

probabilities for the same person (often many orders of magnitude different such as 

one in a billion compared to one in a trillion) and most match probabilities do not 

even take account of the potential for testing errors to massively change the results 

[110].   In comparison, the ‘subjective’ probability of the identification failure, may 

be much more reliable (with lower error bounds) if it is provided by an expert who 

has seen many such parades and their outcomes.  
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If, therefore, a DNA match probability is used to support the prosecution hypothesis, 

it seems reasonable to also use a probability for the identification failure to support 

the defence hypothesis, especially if we do the calculations using a range of values to 

represent the potential errors in judgement.  This is precisely what happened in the 

Adams case introduced in Section 3.2.  In this case the DNA match was the only 

evidence against the defendant, but it was also the only evidence that was presented in 

probabilistic terms in the original trial, even though there was actually great 

uncertainty about the value (the match probability was disputed, but it was accepted to 

be between 1 in 2 million and 1 in 200 million [31]) This had  a powerful impact on 

the jury.  The other two pieces of evidence favoured the defendant – failure of the 

victim to identify Adams and an unchallenged alibi.  In the Appeal the defence argued 

that it was wrong to consider the impact of the DNA probabilistic evidence alone 

without combining it with the other evidence.  

 

So what the defence did was to perform the Bayesian analysis incorporating all three 

pieces of evidence under a range of different prior probability assumptions (ranging 

from those most favourable to the prosecution to those most favourable to the 

defence). In principle this was a very reasonable and logical thing to do. 

Unfortunately, as described in Section 3.2, the defence’s strategy was to get the jury 

to understand and perform the calculations themselves using the Bayesian formulas in 

Figure 5. This strategy was doomed and led directly to the disastrous ruling already 

discussed.  

Using this case as an example, our proposed alternative strategy is to start with the 

simple intuitive example and then simply present the results of running the BN model.  

Figure 4 already presented the structure of the BN required for the Bayesian 

argument. However, any Bayesian argument should NOT begin with the BN model 

but rather would present either the population diagram approach of Figure 2 or event-

tree explanation like Figure 6 of the impact of a single piece of evidence. In this case 

we would start, therefore, by explaining the impact of the DNA match. But we could 

start with 10 million suspects and the DNA match probability of 1 in 2 million. This 

would lead us to conclude that, in addition to the actual source, about 5 other suspects 

are just as likely to be guilty as the defendant in the absence of any other evidence. 

This would mean that a prior probability of guilt of 1 in 10 million becomes 1 in 6.  If 

(as was actually argued in the case) the realistic set of possible suspects was 200,000 
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rather than 10 million, then the number of positive matches is a fraction (one tenth) of 

a person rather than a set of people.  This would lead us to revise the prior probability 

of guilt from 1/200,000 to a posterior of 1/1.1 which is equal to approximately 0.91 or 

91%.  Obviously using a DNA match probability figure of 1 in 200 million results in 

an even higher posterior probability of guilt.  

 

At this point the lawyer would be able to say something like the following: 

 

“What we have demonstrated to you is how we revise our prior assumption 

when we observe a single piece of evidence. Although we were able to explain 

this to you from scratch, there is a standard calculation engine (accepted and 

validated by the mathematical and statistical community) which will do this 

calculation for us without having to go through all the details. In fact, when 

there is more than a single piece of evidence to consider it is too time-

consuming and complex to do the calculations by hand, but the calculation 

engine will do it instantly for us. This is much like relying on a calculator to 

do long division for us. You do not have to worry about the accuracy of the 

calculations; these are guaranteed. All you have to worry about is whether our 

original assumptions are reasonable. But we can show you the results with a 

range of different assumptions”  

 

The lawyer could then present the results from a BN tool. To confirm what has 

already been seen the lawyer could show two results. One (Figure 7) the results of 

running the tool with no evidence entered and the second (Figure 8) the results of 

running the tool with the DNA match entered. The lawyer would emphasize how the 

result in the tool exactly matches the result presented in the event tree.  
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Figure 7 Model with prior marginal probabilities (assumes 200,000 possible suspects) 
 

 

Figure 8 Result of entering DNA match 

 
Next the lawyer would present the result of additionally entering the ID failure 

evidence (Figure 9). The lawyer would need to explain the P(E|H) assumption (in one 

of the scenarios the probability of ID failure given guilt was 0.1 and the probability of 

ID failure given innocence was 0.9). The result shows that the probability of guilt 

swings back from 91% to 52%.  
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Figure 9 Identification failure added 
 

In the same way the result of adding the alibi evidence is presented (Figure 10). With 

this we can see that the combined effect of the three pieces of evidence is such that 

innocence is now more likely than guilt. 

 

Figure 10 Alibi evidence entered 

 
Finally, we can rerun the model with the other extreme assumption about the match 

probability of 1 in 200 million. Figure 11 shows the result when all the evidence is 

entered. In this case the probability of guilt is much higher (98%). Of course it would 
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be up to the jury to decide not just if the assumptions in the model are reasonable, but 

whether the resulting probability of guilt leaves room for doubt. What the jury would 

certainly NOT have to do is understand the complex calculations that have been 

hidden in this approach but were explicit both in the case itself and also in the 

explanation provided in both [31] and [9]. In this respect the judge’s comments about 

the jury’s task: 

 

“to evaluate evidence and reach a conclusion not by means of a formula, 

mathematical or otherwise, but by the joint application of their individual 

common sense and knowledge of the world to the evidence before them” 

 

does not seem so unreasonable to a Bayesian after all.  

 

 

Figure 11 Effect of all evidence in case of 1 in 200 million match probability 

 
We used this method in the medical negligence case [47] discussed in Section 3. 

Event trees were used for the basic argument and also for gaining trust in Bayes. 

Having gained this trust with the lawyers and surgeons we were able to present the 

results of a more complex analysis captured in a BN, without the need to justify the 

underlying calculations. Although the more complex analysis was not needed in court, 

its results provided important insights for the legal and medical team. 
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4 The proposed framework in practice  

 
To bring all the previous strands together we now return to the R v Bellfield case [6]. 

Levi Bellfield was charged with two murders (Amelie Delagrange and Marsha 

Macdonnell) and three attempted murders. A key piece of evidence presented by the 

prosecution against Bellfield was a single blurred CCTV image of a car at the scene 

of the Marsha Macdonnell murder (the bulk of the evidence was otherwise largely 

circumstantial). The prosecution claimed that this car was Bellfield's car. The 

Prosecution used two vision experts to narrow down the number of potentially 

matching number plates in the image. We were originally brought in to determine if 

the statistical analysis of number plate permutations was correct. In fact, we believed 

that the image evidence had been subject to confirmation bias [34]. We used a BN to 

draw conclusions about the number of potentially matching number plates (and hence 

vehicles) that may not have been eliminated from the investigation. 

 

Following on from the first piece of work the defence asked us to review the entire 

prosecution opening. Having discussed the well-known legal fallacies with them they 

sensed that the prosecution had introduced a number of such fallacies. Hence, we 

produced a report [43] that analysed the Prosecution Opening statement and identified 

several explicit and implicit instances of probabilistic fallacies that consistently 

exaggerated the impact of the evidence in favour of the prosecution case. These 

fallacies included one instance of the transposed conditional, several instances of 

impossibility of false negatives, several instances of base rate neglect, at least one 

instance of the previous convictions fallacy, and many instances of both the 

dependent evidence fallacy and the coincidences fallacy. We used Bayesian 

reasoning, with examples of simple BNs, to confirm some of the fallacies. The 

informal versions of the arguments in the report were used as a major component of 

the defence case.  

 

We can present an example of the work done in completely general terms, using the 

approach proposed in this paper. This example involves a new fallacy that we have 

called the “Crimewatch” fallacy. Crimewatch is a popular TV programme in which 
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the public are invited to provide evidence about unsolved crimes. The fallacy can be 

characterised as follows: 

 

Fact 1: Evidence X was found at the crime scene that is almost certainly linked 

to the crime. 

Fact 2: Evidence X could belong to the defendant 

Fact 3: Despite many public requests (including, e.g, one on Crimewatch) for 

information for an innocent owner of evidence X to come forward  and clear 

themselves, nobody has done so 

 
The fallacy is to conclude from these facts that: 

 

It is therefore highly improbable that evidence X at the crime scene could 

have belonged to anybody other than the defendant. 

 

The prosecution opening contained an explicit example of this fallacy. The evidence 

X was the CCTV still image of the car that the police believed was driven by Marsha 

Macdonnell’s attacker. Fact 2 was the prosecution hypothesis that this was a car 

belonging to Levi Bellfield. Fact 3 and the conclusion were the exact statements made 

in the prosecution opening.  

 

The conclusion is a fallacy.  Intuitively, we can explain the fallacy as follows: because 

fact 2 is ‘almost’ certain (the police were already convinced that the car was driven by 

the attacker) we can predict fact 3 will almost certainly be true even before the 

Crimewatch programme is screened (the attacker, whether it is the defendant or 

somebody else) is almost certainly not going to come forward as a result of the 

Crimewatch programme. Hence, when fact 3 is confirmed (nobody does come 

forward) it has negligible impact on the prior probability of guilt.  In other words the 

Crimewatch UK evidence, far from proving that it is “highly improbable that the car 

could have belonged to anybody other than the defendant” actually tells us almost 

nothing than we already knew or assumed. 

 

But to explain this properly we need a Bayesian argument. Once again the 

presentation of the Bayesian argument is initiated with a visual explanation of the 
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impact of a single piece of evidence. We then present a BN (as shown in Figure 12) 

that captures the whole problem. In this BN we start with priors that are very 

favourable to the prosecution case. Thus, we assume a very high probability, 99%, 

that evidence X was directly linked to the crime. 

 

 

 

Figure 12: Crimewatch UK Priors 
 

Looking at the conditional probability table we assume generously that if the owner of 

X was innocent of involvement then there is an 80% chance he/she would come 

forward (the other assumptions in the conditional probability table are not 

controversial).  

 

What we are interested in is how the prior probability of the evidence X being the 

defendant’s changes when we enter the fact that no owner comes forward. The 

prosecution claim is that it becomes almost certain. The key thing to note is that, with 

these priors, there is already a very low probability (0.4%) that the owner comes 

forward. 
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Figure 13 Now we enter the fact 3 (nobody comes forward) 

 

Consequently, when we now enter the fact that nobody comes forward (Figure 13) we 

see that the impact on the probability that X belongs to the defendant is almost 

negligible (moving from 50% to 50.2%).  

 

This demonstrates the Crimewatch fallacy and that the evidence of nobody coming 

forward is effectively worthless despite what the prosecution claims.  

 

In fact, the only scenarios under which the evidence of nobody coming forward has an 

impact are those that contradict the heart of the prosecution claim. For example, let us 

assume (Figure 14) that there is only a 50% probability that the evidence X is directly 

linked to the crime  
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Figure 14 Different priors 

 

Then when we enter the fact that nobody comes forward (Figure 15) the impact on 

our belief that X is the defendant’s is quite significant (though still not conclusive) 

moving from 50% to 62.5%.  But, of course, in this case the priors contradict the 

core of the prosecution case. 

 
Note that we could, instead of the BN presentation, have presented an equivalent 

formulaic argument deriving the likelihood ratio of the Crimewatch evidence. This 

would have shown the likelihood ratio to be close to 1, and hence would also have 

shown that the utility of the evidence is worthless. However, as has been stressed 

throughout this paper, the BN presentation proved to be more easily understandable to 

lawyers. 
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Figure 15 Evidence now makes a difference 
 

 

5 Conclusions 
 

Despite fairly extensive publicity and many dozens of papers and even books 

exposing them, probabilistic fallacies continue to proliferate legal reasoning. In this 

paper we have presented a wide range of fallacies (including one new one) and a new 

simple conceptual approach to their classification. While many members of the legal 

profession are aware of the fallacies, they struggle to understand and avoid them. This 

seems to be largely because they cannot follow Bayes Theorem in its formulaic 

representation. Instead of continuing the painful struggle to get non-mathematicians to 

understand mathematics we must recognise that there is an alternative approach that 

seems to work better. 

 

In simple cases equivalent visual representations of Bayes, such as event trees, enable 

lawyers and maybe even jurors to fully understand the result of a Bayesian calculation 

without any of the mathematics or formulas (websites that promote public 

understanding of probability, such as [42] and [103] are now using such visual 

techniques extensively). This approach has already been used with considerable effect 

in real cases. However, it does not scale up. As more pieces of evidence and 

dependencies are added no first principles argument that the lawyers can fully 

understand is ever going to be possible. In such cases we have proposed to use 
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Bayesian networks (BNs). This proposal is not new; indeed, as long ago as 1991 

Edwards [37] provided an outstanding argument for the use of BNs in which he said 

of this technology: 

 

“I assert that we now have a technology that is ready for use, not just by the 

scholars of evidence, but by trial lawyers.” 

 

He predicted such use would become routine within “two to three years”. 

Unfortunately, he was grossly optimistic for two reasons.  

 

1. Even within the community of statisticians interested in legal arguments there 

has been some lack of awareness that tool support for BNs now makes them 

easily usable; 

2. Acceptance of BNs by members of the legal community requires first an 

understanding and acceptance of Bayes theorem. For reasons explained in this 

paper, there have been often insurmountable barriers to such acceptance. 

 

What is new about our proposal is our strategy for addressing the latter.  

 

We feel the strategy presented could feasibly work in both pre-trial evidence 

evaluation and in court.  In pre-trial we envisage a scenario where any evidence could 

be evaluated independently to eliminate that which is irrelevant, irrational or even 

irresponsible. This could, for example, radically improve and simplify arguments of 

admissibility of evidence.  

 

During trial, our proposed approach would mean that the jury and lawyers can focus 

on the genuinely relevant uncertain information, namely the prior assumptions.  

 

Crucially, there should be no more need to explain the Bayesian calculations in a 

complex argument than there should be any need to explain the thousands of circuit 

level calculations used by a calculator to compute a long division. Lay people do not 

need to understand how the calculator works in order to accept the results of the 

calculations as being correct to a sufficient level of accuracy. The same must 

eventually apply to the results of calculations from a BN tool.  
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We have demonstrated practical examples of our approach in real cases. We recognise 

that there are significant technical challenges we need to overcome to make the 

construction of BNs for legal reasoning easier, notably overcoming the constraints of 

existing BN algorithms and tools that force modellers to specify unnecessary prior 

probabilities (the work in [102] may provide solutions to some of these issues). We 

also need to extend this work to more relevant cases and to test our ideas on more 

lawyers. And there is the difficult issue of who, exactly, would be the most 

appropriate people to build and use the BN models. However, the greater challenges 

are cultural. There is clearly a general problem for the statistics community about how 

to get their voices heard within the legal community. We gain comfort from the fact 

that similar, seemingly impenetrable, cultural barriers have been breached in other 

domains. For example, the case of Duckworth-Lewis [36] demonstrated it was 

possible to gain acceptance of complex mathematical formalisms in the very 

conservative, non-mathematical environment of test cricket (when a new complex 

mathematical formalism was used to replace the previous unsatisfactory method for 

determining fair outcomes of one-day matches). If we can similarly break down the 

barriers between the mathematics and law communities, then there could be a 

transformative impact in the way legal evidence is analysed and presented  

 

Because of this, we believe that in 50 years time professionals of all types involved in 

the legal system will look back in total disbelief that they could have ignored these 

available techniques of reasoning about evidence for so long. 
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