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Abstract-- Bayesian networks have the ability to combine sparse data, prior assumptions and expert judgment into a 
single causal model. We present such a model of an Extreme Programming environment and show how it can learn 
from project data in order to make quantitative effort predictions and risk assessments. This is illustrated with the use 
of a real world industrial project. 

 
 

Index Terms— extreme programming, Bayesian nets, causal models, risk assessment 

1. INTRODUCTION 

Extreme Programming (XP) is one of several iterative approaches to software development, 

collectively known as “Agile” methods [31]. It consists of a collection of values, principles and 

practices as outlined by Kent Beck, Ward Cunningham and Ron Jeffries [20] [21] [22]. These 

include most notably: iterative development, pair programming, collective code ownership, 

frequent integration, onsite customer input, unit testing, and refactoring.  

XP emphasizes a lightweight, often informal approach. There are no large-scale requirements, 

analysis and design phases, and so there are none of the traditional metrics associated with the 

requirements or design phases, such as Function Points [36]. Instead, the customer and 

development team agree a series of User Stories (described later) that concisely define the 

requirements. The definition of a User Story is not as well defined as a Function Point. As such, 

User Stories are currently of limited value in predicting effort or quality. Yet managers of XP 
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projects have just as great a need for such predictions as managers on any other software project.  

Management gets some indication of the effort required based on the developers’ estimates for 

completing user stories, but these only cover time spent working directly on the user stories. They 

do not cover other overheads. Managers need to know how accurate developers’ estimates are 

and how they translate to calendar time. Only then can a project manager determine how long the 

project will actually take to complete. This paper addresses this problem by exploiting ideas on 

causal modeling that have led to improved effort and quality prediction for traditional software 

development.  

Fenton and Neil [10] explained the rationale behind creating causal models of the software 

development process using Bayesian Nets (BN). BNs offer the advantage of being able to reason 

in the presence of uncertainty, prior assumptions and incomplete data. They can intermix expert 

judgment, statistical distributions and observations in a single model. Further, they are able to 

learn from evidence in order to update their prior beliefs. In an iterative development 

environment, such as XP, we can take advantage of this learning capability, where information 

obtained from early iterations in the project can be used to adapt a model to the local 

environment.  

This paper presents a BN model of Project Velocity (PV), the one management metric that is 

always available in XP. Roughly speaking, PV can be thought of as "productive effort per 

iteration". The exact definition of PV is given in section 3.2.  

We set the following key requirements that the model must satisfy. 

1. It must monitor and predict PV, taking into account the impact of relevant process 

factors. 

2. For computability reasons, the core model must be very small. This enables it to be 
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replicated multiple times in order to represent the multiple iterations of an agile 

development environment. 

3. The model must be able to handle different types of data for different environments. In 

particular, the model must handle key XP practices, while being dependent on none of 

them. 

4. The model must be capable of replicating empirical behavior. In particular, many 

projects report low initial productivity, gradually rising on subsequent iterations [6], [7] 

and [4].  

5. The model must learn from data, either as a result of observations or as a result of 

expert judgment entered as evidence. 

6. It must give useful and clear advice to managers. 

The main contribution of this paper is to introduce and validate dynamic Bayesian nets as a 

means of modeling iterative software development. PV data is collected from the first iteration in 

any XP project. This is incorporated into the model, enabling it to learn key parameters and 

increase the confidence of its predictions in subsequent iterations. We show that, with very little 

data, it is possible to correct the model’s prior assumptions and quickly produce accurate models 

of PV with associated risk assessments. 

The remainder of this paper is organized as follows. In section 2 we discuss related models, 

both models of XP and other BN models of the software engineering process. Section 3 covers 

some of the definitions needed by the model. Section 4 presents the model itself. Section 5 covers 

model behavior using hypothetical data while section 6 validates the model using a real XP 

project. Section 7 discusses the implications of the model, including threats to its validity and 

some conclusions. 
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2. RELATED WORK 

 
We discuss related work under two headings. We first examine other predictive models of XP 

development, before going on to describe BN models of the software development process. 

 

2.1. Extreme Programming Predictive Models 
 

Williams and Erdogmus [18] developed a Net Present Value (NPV) [19] model of Pair 

Programming (PP) – one of the key practices advocated by XP. NPV models take into account 

the fact that earnings in the future are worth less than the same dollar earnings today. The model 

combines:  

1. productivity rates,  

2. code production rates (derived from the literature),  

3. defect insertion rates 

4. and defect removal rates.  

Using empirical values for PP productivity and delivered defect rates [23] [24] [25], the model 

predicts that pair programming is a “viable alternative to individual programming”. 

Padberg and Müller [26] also created an NPV model of XP. Their model uses market pressure 

as the principle means of discounting the NPV. The model was tested under various different 

assumptions about performance and defect rate improvements under PP. The results indicate that 

the value of both of these parameters is crucial. When market pressure is high, and there is 

sufficient improvement in both LOC and defect rates, then PP can indeed deliver an advantage. 

Several groups have constructed System Dynamics (SD) Models of XP. SD models a system as 

a collection of stocks, flows and feedback loops, and was first applied to software engineering by 

Abdel-Hamid [28]. Misic, Gevaert, and Rennie [27] attempted to model the interaction of various 
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XP practices. They particularly concentrated on pair programming, refactoring, test driven 

development and iterative development. Simulation results indicated that XP has an advantage 

when pairs worked well together and did not swap frequently. 

Kuppuswami, Vivekanandan, and Rodrigues [29] also created an SD model. They were able to 

successfully simulate the flattened cost of change curve claimed by Beck [21] (p. 23). 

Cau et al [32] developed a custom simulation to model the XP process, calibrated using data 

from a real XP project. Once calibrated, their model was able to reproduce empirically derived 

results [33] about the effects of test driven development (one of the recommended XP practices). 

All of the above provide explanation, insight or validation of XP techniques. What none claims 

to do is offer combined prediction and risk assessment for project managers. This can be achieved 

using causal models, which are now being used effectively in traditional software engineering. 

2.2. Bayesian Net Models in Software Engineering 
 

 

Fig.   1 An example of a Bayesian Network 

 
A Bayesian Net (BN) [1] is a directed acyclic graph (such as the example shown in Fig.   1), 

where the nodes represent random variables and the directed arcs define causal influences or 

functional relationships. Nodes without parents (such as the “Probability of finding defects” and 

“Defects In” nodes in Fig.   1) are defined through their prior probability distributions. Nodes with 
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parents are defined through Conditional Probability Distributions (CPDs). For some nodes, the 

CPDs are defined through deterministic functions of their parents (such as the “Defects Out” node 

in Fig.   1), others (such as the “Defects Found” node in Fig.   1) are defined as standard 

probability distribution functions. 

As explained by Fenton and Neil [10], BN models have several advantages over regression 

based models. BNs do not rely on point values of parameters that have been derived through 

some “best fit” procedure. Instead, the whole distribution of a variable is included. Similarly, BN 

models don’t just predict a single value for a variable; they predict its probability distribution. By 

taking the marginal distributions of variables of interest, we get a ready-made means of providing 

quantitative risk assessment. 

When a variable is actually observed, this observation can be entered into the model. An 

observation reduces the marginal probability distribution for the observed variable to a probability 

of 1 for the observed state (or a small interval containing the value in the continuous case) and 

zero otherwise. The presence of an observation updates the CPD of its children and, through 

Bayes theorem, the distributions of its parents. In this way observations are propagated 

recursively through the model. BN models can therefore update their beliefs about probable 

causes and so learn from the evidence entered into the model. More information on BNs and 

suitable propagation algorithms can be found in [1] and [5]. 

Fenton, Neil, and others have gone on to develop a series of BN models, culminating in the 

AID tool [13], the MODIST models [14], and the extensive trials of revised models at Philips 

[15]. A similar model has been developed by Siemens [34]. Those models were used to provide 

improved methods of risk assessment for project managers, with special emphasis on defect 

predictions and effort prediction.  
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Several other groups have also researched the use of BN based software process models. 

Wooff, Goldstein, and Coolen [17] have developed BNs modeling the software test process while 

Stamelos et al [35] used COCOMO81 cost factors to build a BN model of software project 

productivity. Bibi and Stamelos [16] have shown how BNs can be constructed to model IBM’s 

Rational Unified Process. 

While these models can be adapted to agile development processes, they are not specifically 

targeted at such environments. Agile methods, such as XP, are characterized by highly iterative 

approaches to software development. If each iteration is treated as if it were a mini-project in its 

own right, then existing models would quickly result in BNs which are unmanageable, laborious 

to maintain, and computationally infeasible. What is needed is an extremely small core model that 

can be extended as needed. 

3. DEFINITIONS AND TERMINOLOGY 

 
The basic unit of work in XP is the User Story. When an XP iteration finishes, the estimated 

efforts for the completed user stories are added together to create the Project Velocity (PV). In 

the sub-sections that follow we describe how user stories and PV are defined, and how they are 

incorporated into the model 

 

3.1. User Stories 
 

Developers assign the effort that they believe is required for them to design, code and test each 

user story. Efforts are estimated using a unit called Ideal Engineering Days (IEDs). This is a day 

devoted entirely to user story completion, free from overheads and distractions. It includes 

detailed design, coding, unit testing and acceptance testing. It excludes all other effort that can 

consume developers’ time, including but not limited to administrative tasks, mentoring, support  
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and learning. 

We denote the estimated effort for the j th user story in iteration i by Ui
j. 

 

3.2. Project Velocity 
 

Once iteration i is complete, the estimates for the completed user stories are added together. 

This is the project velocity Vi for iteration i.  

 

∑=
ij

j
ii UV
 in completed 

 Eq.  1 
 

 
Assuming that the next iteration, i + 1, is the same length, the customer selects the highest 

priority uncompleted user stories whose estimated IEDs sum to Vi. These user stories are then 

scheduled for iteration i + 1. The work scheduled for iteration i + 1 therefore has the same 

estimated ideal effort as the estimates for the actual work completed in iteration i.  

Note that the actual effort to complete a user story is not used here. To relate actual productive 

effort to estimated productive effort (i.e. PV), we introduce a bias, bi, into the model. Note that 

the word “bias” is not intended in the statistical sense of a biased estimator. 

If Ai
j are the actual efforts taken then: 

 

∑∑

∑
==

j

j
i

i

j

j
i

j

j
i

i A

V

A

U

b  

Eq.  2 
 

 

3.3. Process factors 
 

To model the relationship between total effort and PV, there is a single controlling factor which 

we call Process Effectiveness, e. Process Effectiveness is a real number in the range [0,1]. A 

Process Effectiveness of one means that all available effort becomes part of the productive effort. 
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The Process Effectiveness is, in turn, controlled by two further parameters: Effectiveness Limit, 

l, and Process Improvement, r. The Process Improvement is the amount by which the Process 

Effectiveness increases from one XP iteration to the next. To allow for failing projects, the 

Process Improvement can take on negative values. 

The Effectiveness Limit recognizes the fact that there are often limits to how productive a team 

of people can be. Effectiveness Limit is therefore the maximum value which the model allows 

Process Effectiveness to take. 

Note that all of this relies on minimal assumptions: effort either contributes to delivered 

functionality, or it does not. The ratio between productive effort and total effort exists whether 

we call it Process Effectiveness or not. This ratio varies between iterations and has a limit, even if 

the limit is unity. As the core model contains variables based only on these factors, it too is based 

upon minimal assumptions. 

 

4. BAYESIAN NET MODEL  

 
The BN used to model project velocity is shown in Fig.   2. Table 1 summarizes the model 

variables for the BN. Measures of effort are denoted by capital letters. All other variables use 

lower case letters. Subscripts are used to denote a specific XP iteration. For example V2 denotes 

the velocity in iteration 2. Where the iteration is not important, we drop the subscript and refer 

simply to V.  
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l i-1 

ri-1 

ei-1 

bi-1 

Ei A i 

V i bi 

l i 

ri ei 

= bi Ai 

= ei Ei 

= min(r i + ei-1, l i) 

 
Fig.   2 Project velocity model 

 
When we wish to distinguish between a model prediction and a measured value, we will use an 

underscore to denote the measurement. So if V3 is the predicted value for the velocity at iteration 

three, then V3 is the measured value. 

Table 1 Symbol definitions 

Symbol 
 

Meaning 

di Number of working days in iteration i. di = 0, 1, 2, ... This is an integer value.  
pi Number of team members in iteration i. This can be fractional if one or more people do not 

work full time on the project. ei ∈ [0, ∞).  
si Productive effort to date. si = si-1 + Vi = ΣVi, si ∈ [0,∞). 
Ei Iteration effort in man-days. Ei = pi × di, Ei ∈ [0,∞). 
Ui

j Estimated effort of j th user story in iteration i. Ui
j ∈ [0,∞). 

Ai Actual productive effort in iteration i. Ai = Ei × ei, Ai ∈ [0,∞). 
Vi Project Velocity in iteration i. ∑=

j

j
ii UV , Vi ∈ [0,∞). 

bi Estimation bias. bi =  Vi / Ai, bi ∈ [0,∞). 
fi Load Factor in iteration i. fi = Ei / Vi, fi ∈ [1,5]. Used to estimate timescales. The upper limit 

is arbitrary. 
ei Process effectiveness in iteration i. Vi = Ei × ei, ei ∈ [0,1].  
l i Effectiveness limit. The maximum value that the ei can take, l i ∈ [0,1]. 
r i Process improvement. ei = min (ei-1 + r i , l i) , r i ∈ [-1,1]. 

 
Not all of the variables shown in Table 1 are shown in Fig.   2. Several of the variables are 

included only to make the definitions of others more rigorous (d, and p). Some exist to relate the 

model to XP concepts (f and U), and others to relate the model to management concepts (s). 

Before presenting the model in detail, we need to discuss a few preliminaries about Dynamic 
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Bayesian Nets. 

 

4.1. Dynamic Bayesian Networks 
 

Dynamic Bayesian Nets (DBN) extend BNs by adding a temporal dimension to the model. 

Formally, a DBN is a temporal model representing a dynamic system, i.e. it is the system being 

modeled which is changing over time, not the structure of the network [8]. A DBN consists of a 

sequence of identical Bayesian Nets, Zt, t = 1,2,..., where each Zt represents a snapshot of the 

process being modeled at time t. We refer to each Zt as a timeslice. For XP, where the software 

production process is split into a series of discrete iterations, this is a particularly apt approach. 

The models presented here are all first order Markov. This means that P(Zt | Z1:t-1) = P(Zt | Zt-1) 

(informally, the future is independent of the past given the present). The first order Markov 

property reduces the number of dependencies, making it computationally feasible to construct 

models with larger numbers of timeslices. Consistent propagation is achieved using standard 

Junction Tree algorithms [5]. Junction tree algorithms provide exact (as opposed to approximate) 

propagation in discrete BNs and are generally regarded as among the most efficient such 

algorithms [30]. 

Nodes that contain links between two timeslices are referred to as link nodes. Fig.   2 shows a 

single timeslice Zt, t =1,2…., but with the link nodes from the previous timeslice shown lightly 

shaded. The link nodes to the next timeslice are shaded black. Fig.   3 shows the same model, this 

time “rolled out” as a three iteration DBN (link nodes are shaded). 

The models in this paper were implemented using the AgenaRisk toolset [3]. This was due, 

amongst other things, to its ability to build dynamic models, to handle continuous variables and 

the availability of a wide range of built-in conditional probability functions. 

Page 11 of 35

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Predicting Project Velocity in XP using a Learning Dynamic Bayesian Network Model 
 

12

 
 

l1 

r1 

e1 

b1 

E1 A1 

V1 

l2 

r2 

e2 

b2 

E2 A2 

V2 

l3 

r3 

e3 

b3 

E3 A3 

V3 

 
Fig.   3 Model as a DBN 

 

4.2. Parameter Learning 
 

The process effectiveness limit (l i) , rate of process improvement (r i) and bias (bi) are the key 

parameters in this model. Between them they control the process effectiveness node, which in turn 

controls the velocity node. It is important that the model is capable of adjusting these parameters 

as a result of entering data about the project. In particular, the model must respond to 

observations of the V i. 

 

4.3. Iteration Model 
 

The BN shown in Fig.   2 is used as a single iteration model for project velocity. The model is 

best thought of as comprising three distinct fragments.  

Fragment 1 controls the Productive Effort (Fig.   4). A single variable, Process Effectiveness 

(ei), is assumed to determine the Productive Effort. High Process Effectiveness means a high 

Productive Effort and a correspondingly high velocity. Process Effectiveness increases or 

decreases based on the value of the Process Improvement (r i). It is constrained to the range [0, l i]. 
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The CPD of l i is a function of l i-1. In this case l i is set equal to l i-1. The process effectiveness 

limit ( l i) is really a single variable which is global to all timeslices. Copying it between timeslices 

allows us to preserve the first order Markov property. Similarly r i is just a copy of r i-1. 

 
 

l i-1 

ri-1 

ei-1 

l i 

ri ei = min(r i + ei-1, l i) 

 
Fig.   4 Fragment 1 - Process effectiveness nodes 

 
Fragment 2 contains the "effort" nodes (Fig.   5). It combines the total Iteration Effort (Ei) with 

the process effectiveness (ei) to create the actual Productive Effort (Ai). Note that, although Ai is 

not required by the XP methodology, we need it in this model for reasons that will be explained 

below. We do not expect A to be observed in real projects. 

 
 

Ei A i = ei Ei  
Fig.   5 Fragment 2 - Effort nodes 

 
Fragment 3 holds the project velocity (Fig.   6). Velocity can either be predicted by the model 

(Vi), or once an iteration is completed, it can be entered as evidence (Vi) and used to learn the 

model parameters. The bias, bi, allows for any consistent bias in the team’s effort estimation. If 

there was no bias then the productive effort, A, would be the same as V and there would be no 

need to distinguish between the two.  

 
 

bi-1 V i bi = bi Ai 
 

Fig.   6 Fragment 3 - Project Velocity 
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4.4. Setting the initial conditions 
 

An initial timeslice, Iteration 0 (shown in Fig.   7), is used to set the initial model conditions.  

 

l1 

r1 

e1 

b1 

E1 A1 

V1 

l0 

r0 

e0 

b0 
 

Fig.   7 Initial Velocity model 

 
For iteration 0, the prior distributions of the input effectiveness limit (l0), process improvement 

(r0) and process effectiveness (e0) are all set to be normal distributions, with variances of 0.3 and 

means of 0.8, 0.2 and 0.3 respectively. These values are based on a controlled case study by 

Abrahamsson and Koskela [7], where process effectiveness varied between 0.4 and 0.75. We have 

simply extended this range slightly and chosen r0 so that the lowest to highest transition can take 

place within four iterations. 

The prior of the estimation bias (b0) is set to a log normal distribution with a mean of 

approximately 1.0, and a variance of 0.1. The log normal distribution follows from the fact that 

the bias cannot be less than zero but has no upper bound. For example, a pessimistic bias, where 

estimates are 2 times the actual, results in a bias of 2, whereas an optimistic bias results in a bias 

of 0.5. This distribution is confirmed empirically, for example by Little [12]. 

The choice of these priors is discussed further in the “Conclusions and Discussion” section of 

this paper. 
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Evidence is entered in all of the Ei nodes so the prior distributions these nodes have no effect. 

5. MODEL BEHAVIOR  

 
Fig.   8 shows the predicted values of the PV for a hypothetical project with 10 iterations and 

50 hours of effort available in each iteration (i.e. Ei = 50, i = 1,…,10). The central dotted line is 

the mean, with the outer dotted lines showing +/- one standard deviation. The solid line is the 

median value. This is based solely on the model’s initial conditions. 

The Process Effectiveness increases with each iteration by an amount equal to the Process 

Improvement. It flattens out as it begins to hit the Effectiveness Limit. As can be see from the 

graph, this leads to the PV starting fairly low and gradually increasing with each iteration. Being 

able to model and predict this type of behavior was one of the main objectives of the core model. 

 

 

Fig.   8 Project velocity values – median, mean, mean ± 1 SD 

 
This is our “Baseline” scenario, with no PV evidence entered into the model. By entering PV 

evidence, we can construct various alternative scenarios and compare the learned parameters and 

predicted values of future PV. The values shown in Table 2 were used to construct three such 
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scenarios, all based on 50 hours of available effort per iteration. No values were entered for V9 or 

V10, allowing the model to predict these values. These represent projects that are respectively 

failing, performing as expected, or progressing with great success. We refer to these as the 

“Failing”, “Average” and “Success” scenarios respectfully. 

Note that the “Success” scenario uses deliberately unrealistic figures in order to test the range 

of the model. 

Table 2 - PV values for three scenarios 

Scenario\PV V1 V2 V3 V4 V5 V6 V7 V8 
Failing 2 3 3 4 4 3 4 4 
Average 20 25 27 28 28 29 30 31 
Successful 200 205 210 215 219 223 225 227 

 

5.1. Parameter Learning in Different Scenarios 
 

Fig.   9 shows the resulting distributions of the bias node, b10. There are four distributions, one 

for each scenario. The “Failing”, “Average” and “Baseline” scenarios have mean values close to 

one, although both the Failing and Average scenarios have reduced variances compared to the 

baseline. The reduced variances are to be expected from scenarios where evidence has been 

entered.  

In Fig.   8 the Baseline scenario predicted values for V1 to V8 in the range 18-30. However the 

Success scenario entered evidence in the range 200-227, indicating that the project team has done 

200-227 estimated IEDs in a single iteration with only 50 man-days of effort. Clearly this can only 

come about if their estimates are significantly biased, and indeed, the model suggests that the bias 

in this case has a mean value of 4.3. This only accounts for part of the high PV values however. 

The remainder is accounted for by an increased effectiveness limit (Fig.   10) which allows a 

greater process effectiveness. 
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Fig.   9 Bias distribution, iteration 10 

 
 

 Success 

Average 
 

Baseline 

Failing 
 

 

Fig.   10 Effectiveness Limit, median, 5 iterations 

 
As we might expect, the Failing scenario shows a poor effectiveness limit and a very small 

improvement in process effectiveness (Fig.   11). Surprisingly, the success scenario shows an even 

worse process improvement. However, this is because the model is forced to assume a very high 
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process effectiveness in the initial iterations. The values provided are so far outside the normally 

expected range that the model is continually trying to compensate by bringing the process 

effectiveness back down again. By iteration 6 the process improvement finally begins to stabilize. 

 

Success 

Average 
 

Baseline 

Failing 
 

 

Fig.   11 Process Improvement, median, 5 iterations 

 
Both the Effectiveness Limit (Fig.   10) and the Process Improvement (Fig.   11) change as 

evidence is entered in the first eight iterations. The model therefore learns as new evidence is 

entered and changes its predictions accordingly. 

Fig.   12 shows the behavior of the Bias node, bi, in the Average scenario. The central dotted 

line, which is almost co-incident with the solid line, shows the mean and median values 

respectively. The outer dotted lines show the mean ± 1 standard deviation (SD). The SD gets 

smaller as more evidence is entered into the model. This illustrates that, not only does the model 

learn the values of its parameters, but the uncertainty in those values decreases as more evidence 

becomes available. 
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Fig.   12 Bias, Average scenario,  median, mean ± 1 SD 

 
 

5.2. Indicator Nodes 
 

Indicator nodes are nodes with a single parent and no children. They are often used to provide 

evidence for variables that are themselves unobservable. Indicator nodes are one of the main 

mechanisms used to introduce XP practices into the model. 

XP practices cannot be categorized as simply being “implemented” or “not implemented”. 

There are degrees to which various practices are adopted. For example, a team may choose to 

program in pairs for complex parts of the code and program individually when writing routine 

code. It is important therefore that XP practices are represented by nodes with a sufficient range 

of states to reflect the degree of variation of that practice within the project. 

An indicator node for the Effectiveness Limit is shown in Fig.   13: the “Collective ownership” 

node. This is the extent to which collective code ownership is practiced. It is a ranked node, 

consisting of five discrete values ranging from Very Low to Very High. Ranked nodes allow the 

user to enter a range of values for “Collective Ownership”. The probability of these five values is 

derived from a truncated normal distribution whose mean is l i, and whose variance is arbitrarily 
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set to 0.1. This distribution ensures that a high degree of collective ownership leads to a high 

effectiveness limit. The variance determines the strength of the relationship.  More information on 

ranked nodes and the use of the truncated normal distribution can be found in [11]. 

 

l i-1 

ri-1 

ei-1 

l i 

ri ei 

Collective 
ownership 

 

Fig.   13 The "Collective Ownership" indicator node 

 
 

High 

Mix  
 

Baseline 

Low 
 

 

Fig.   14 Effectiveness Limit with and without indicator node evidence 

 
With no evidence, the node plays little part in the model, and its parent, l i, remains constant 

from one iteration to the next (the “Baseline” scenario). However, when we set the value of 

“Collective ownership” in each iteration to "Very High" (the “High” scenario) then the situation 
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changes. The evidence back propagates to l i. Because of the learning mechanism described above, 

the effect is cumulative and the mean value increases across iterations. The difference is shown in 

Fig.   14.  

Values entered into this node are examples of expert judgment. The ease with which expert 

judgment can be combined with objective evidence and prior assumptions is one of the benefits of 

the Bayesian Network approach to modeling. 

Two other scenarios are also shown, one where the Collective Ownership node is always set to 

“Very Low” (the “Low” scenario) and a slightly more realistic case (the “Mix” scenario). In the 

Mix scenario, Collective Ownership starts off “Very Low”. However management realize that 

there is a problem and take steps to improve collective ownership. By iteration 4 Collective 

Ownership improves to “Medium” and by iteration 6 it achieves a “High” value. 

The extent to which XP practices are implemented can therefore have a dramatic effect on the 

model parameters, which in turn propagates through to the model’s predictions.  

It is not necessary to include all XP practices as indicator nodes in all iterations. If a practice, 

such as pair programming say, is consistently maintained at the same level in all iterations, then its 

effect will be included in the learned values of the model parameters. Only practices which affect 

project velocity and which vary significantly between iterations, need to be included as indicator 

nodes. 

6. MODEL VALIDATION  

 
We apply the model to an industrial case study (section 6.1). The model can learn from the 

initial data entered from the project (section 6.2) and adjusts its predictions once beneficial XP 

practices are taken into account (section 6.3). Section 6.4 provides an example of how the model 
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can be calibrated for a specific XP practice. Finally, in Section 6.5 the model provides predictions 

for the time taken to deliver a fixed amount of functionality. These are in good agreement with the 

actual functionality delivered. 

 

6.1. The Motorola Project 

 
Williams, Shukla and Anton [4] provided a detailed description of an XP project developed at 

Motorola. The project was developed in a series of eight iterations of between two and three 

weeks duration. The number of people on the team varied from three to nine over the duration of 

the project. The full data set is shown in Table 3. 

Table 3 – Motorola project data 
 

    i 1 2 3 4 5 6 7 8 
di 15 15 15 16 12 10 8 10 
pi 3 3 6 6 7 7 9 4 
Ei 45 45 90 96 84 70 72 40 
V i 9 13 35 30 40 40 36 20 

 

The definition of Project Velocity used by the Motorola team corresponds to what we have called 

Process Effectiveness. We will continue to use the definition given in Eq.  1. The values for Vi 

given in Table 3 have been calculated using our definition. 

Initially we simply enter values for Ei into the model (no values for Vi entered). Fig.   15 shows 

the resulting marginal distributions which are generated for the Vi node. There is one distribution 

for the node in each timeslice. 
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Fig.   15 Distributions for Vi , one per timeslice 

 
 

Predic ted 

Ac tua l 

 
Fig.   16 Predicted vs. actual Motorola V (medians) 

 
The median values from the Vi distributions are shown in Fig.   16 (the “Predicted” graph). 

Actual values for Vi  are shown in the same figure for comparison (the “Actual” graph). The large 

“Actual” dip in iteration 4 is put down to a post-Christmas malaise by the Motorola team.  

 

6.2. Parameter Learning  

 
There are a number of problems with the predicted values in Fig.   16. The most obvious is that, 
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apart from iteration 6, the predicted values are consistently too high. In this section we 

demonstrate how the model can learn from real project data and quickly improve the accuracy of 

its predictions. 

The effect of this learning process can be seen by taking the “Predicted” scenario and entering 

Vi observations for completed iterations. As each new piece of information is entered, back 

propagation takes place, causing the distributions for the model parameters to be updated. These 

updated parameter distributions then affect the predictions of future iterations.  

 

P re d ic te d  

A c tu a l 

 
Fig.   17 Predicted vs. actual V, 2 observations 

 
The graphs in Fig.   17 show the change in predicted values when V1 and V2 have been entered. 

The whole of the “Predicted” graph moves to lower values as the model learns from the 

observations. The predictions for V3 and V4 improve as a result. However, the predicted values for 

V5, V6 and V7 are significantly worse. 

The Williams, Shukla and Anton paper [4] points out that various XP practices were 

implemented more effectively in later iterations. In the next section, we show how this can be 

incorporated into the model. 
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6.3. “Onsite customer” as an Indicator Node 
 

An indicator node for the Effectiveness Limit is shown in Fig.   18: the “Onsite Customer” 

node. This is the extent to which an authoritative customer was available to answer questions 

about requirements and provide feedback on development. It is a ranked node, consisting of five 

discrete values ranging from Very Low to Very High. These discrete values define five equal, 

discrete partitions of the real number range [0,1]. 

 

l i-1 

ri-1 

ei-1 

l i 

ri ei 

Collective 
ownership 

Onsite 
Customer 

 
Fig.   18 The "Onsite Customer" indicator node 

 
The probability of these five values is derived from a truncated normal distribution whose mean 

is l i, and whose variance is set to 0.1. This distribution ensures that a high degree of customer 

input leads to a high effectiveness limit.  

It is important to emphasize that the values entered into the “Onsite Customer” node must be 

relative to the need for customer input. If the project team have developed similar projects for this 

customer in the past, or are themselves experts in the application domain, then constant customer 

input may not be useful. In these circumstances a “Very High” value for “Onsite Customer” might 

be appropriate, even if the customer is not physically present, but was still able to provide input 

when needed. 

Page 25 of 35

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Predicting Project Velocity in XP using a Learning Dynamic Bayesian Network Model 
 

26
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O n s ite  C u s t 

 
Fig.   19 Effectiveness Limit with and without indicator node evidence 

 
 

A c tu a l 

L e a rn e d  

O n s ite  C u s t 

 
Fig.   20 V with and without Onsite Customer evidence 

 
Fig.   19 shows how the indicator node’s parent is affected by changes in its values. The central, 

straight line shows the median from the Effectiveness Limit node’s distribution when only effort 

data has been entered; this is the “Predicted” scenario. When all the Vi data is entered, then the 

Effectiveness Limit varies throughout the project (the “Actual” curve). The “Learned” curve 

shows the Effectiveness Limit that is learned when only V1 and V2 have been entered as 

observations. This is the curve which is responsible for the modified predictions shown in Fig.   

17. 
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At the start of the 5th iteration, the Motorola team had constant access to an onsite customer. 

The “Onsite Customer” indicator node was therefore set to “Very High” for these iterations. The 

result is the “Onsite Cust” curve. It shares the same values for the Effectiveness limit as the 

“Learned” curve, until the values for the Onsite Customer indicator node are modified. 

The result of entering indicator node evidence is an improvement in the predicted Vi values, as 

shown in Fig.   20. 

 

6.4. Calibrating the Onsite Customer Node 
 

The distribution for the “Onsite Customer” node is based on data from Korkala, Abrahamsson 

and Kyllönen [9]. In their paper, four case studies are described with varying degrees of customer 

interaction. The percentage of effort devoted to fixing defects, including specification defects, 

varied greatly in the four case studies. Where customer input was very high, only 6% of effort was 

spent fixing defects. Moreover this level remained constant across iterations. At the other 

extreme, when customer input was very low, the time spent fixing defects grew across iterations 

until it reached about 40% in iteration 3. 

Our model does not explicitly include details of defect fixing effort (including requirements 

defects); they are simply included as effort which does not contribute to V. We therefore make the 

following definitions and assumptions concerning the relationship between defect fixing effort and 

non-velocity effort. 

1. Define “Miscellaneous Effort”, mi, to be the fraction of effort that does not contribute to 

completed user stories: Ei = Vi + mi. 

2. Miscellaneous effort is composed of a variable component due to defect fixing effort, di, 

and a set of fixed overheads, oi: mi = di + oi. This does not provide a full description of 
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miscellaneous effort, but it is adequate for this model. 

3. When the onsite customer input is at its maximum, the rework effort is at its minimum. 

 
 

l i-1 

ri-1 

ei-1 

l i 

ri ei 

mi = 1 - ei 

di oi = mi - oi 

Onsite 
Customer 

 
Fig.   21 BN used to calibrate the Onsite Customer node 

 
With these assumptions in place, we can use the BN shown in Fig.   21 to calibrate the Onsite 

Customer node. The algorithm proceeds as follows. 

1. An initial guess is made at the Onsite Customer distribution. 

2. The values of oi are chosen so that, when the Onsite customer node is set to “Very 

High”, di produces a constant mean value of about 6% across all iterations. 

3. Modify the Onsite Customer distribution, with the value set to “Very Low” until the 

time spent fixing defects in iteration 3 is about 40%. 

4. Repeat steps 2 and 3 until both conditions are satisfied simultaneously. 

 
The resulting defect effort percentages for each value of “Onsite Customer” across four 

iterations are shown in Fig.   22. These are similar to the empirical curves of Figure 3 in [9]. 
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Fig.   22 Defect effort % for each Onsite Customer setting 

 
 

6.5. Timescale Prediction 

 
Fig.   23 shows a slightly modified version of the velocity fragment of the model. This includes 

an additional link node, si, which acts as the cumulative sum of V to date. 

 
 

bi-1 V i bi 

si-1 si = si-1 + Vi  
Fig.   23 Project Velocity summed to date 

 
Plots of si for the initial prediction, the learned prediction and the actual scenarios are shown in 

Fig.   24. If the total estimate to complete the entire project is, say, 200 IEDs, then we can 

immediately read off from the graph how long it will take to complete the project.  

The initial predictions of the model are too optimistic. However, once the model has learned 

from the V1 and V2 observations, and account has been taken of the onsite customer, the 

predictions are virtually indistinguishable from the actual outcome. 
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Fig.   24 Sum Vi to date 
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Fig.   25 Iteration 8 cumulative distributions 

 
The Motorola project completed 224 IEDs of functionality before the project ended. The model 

can quantify the uncertainty involved in completing 224 IEDs within 8 iterations. Fig.   25 shows 

the cumulative distribution functions for the si node in iteration 8. The vertical line allows us to 

read off the probability of completing up to 224 IEDs by the end of the 8th iteration. For the 

“Initial” scenario, there is only a 25% chance of completing up to 200 IEDs. Once the model has 

Page 30 of 35

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Predicting Project Velocity in XP using a Learning Dynamic Bayesian Network Model 
 

31

learned from V1 and V2, the probability is revised up to a 65% probability. This means that the 

model was initially too optimistic in its predictions (a 65% chance of delivering up to 224 IEDs 

means a 35% chance of delivering more than 224 IEDs). 

 

7. CONCLUSIONS AND DISCUSSION 

 
We have developed a model of XP project velocity and shown that it reproduces known 

empirical behavior from iterative projects.  

The model has been applied to a real industrial project. Incorporating data from the early part of 

the project enabled the model to update its parameters and improve its predictions. When this was 

combined with knowledge about the presence of an onsite customer, the model was able to make 

extremely accurate predictions about the level of functionality delivered over time. Other XP 

practices can be incorporated in the model using similar techniques. 

While the model presented here has successfully demonstrated the benefits of using a learning 

BN model in XP projects, we recognize that there are a number of threats to its validity. 

1. The model relies on having sufficient degrees of freedom to learn from its environment. 

This is principally accomplished by updating the parameter nodes l i and r i. It is possible 

those are insufficient to accommodate the full range of behaviors of real XP projects, or 

that some future XP practices cannot be wholly accommodated as indicators of one of 

these nodes.  

2. Only a single industrial test case has been used. Greater confidence in the model will be 

achieved through exposure to a greater variety of data sets. 

3. The example shown had the benefit of real effort data from a completed project. At the 

start of a project, only projections of available effort are available. 
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4. No sensitivity analysis has been performed on the model priors in Iteration 0. This is not 

an especially serious concern because, regardless of the initial values, the model will 

adapt to the current project’s local conditions as soon as the first few iterations are 

completed. Clearly, any change in the means or standard deviations of the priors will 

affect the model’s initial predictions. We would expect that more mature software 

development organizations would replace the supplied values with distributions based 

on their own previous metrics programs.  

5. Two XP practices have been included in the model: “Collective ownership”, using 

hypothetical data, and “Onsite customer”, using data from a single study. Empirical data 

on the effectiveness of other XP practices needs to be used in order to calibrate 

appropriate indicator nodes. 

Despite these concerns, there are a number of clear benefits to this approach. 

1. Although prior metrics information is valuable, an extensive data collection phase is not 

essential. The model starts off making generic predictions, but quickly alters them as 

local data becomes available. Developers tasked with metrics collection therefore see an 

immediate benefit from doing so: predictions about their own project will improve as a 

result. Contrast this with traditional metrics collection programs, which often founder 

because of the need for long-term commitment. 

2. Empirical data, project data, prior assumptions and expert judgment are combined in a 

single intuitive, causal model. 

3. The predictions provide probability distributions, not just single values. The model tells 

you what the chances of various outcomes are. 

4. Provided suitable empirical evidence is available, it is relatively simple to add new XP 
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practices or other environmental features, making the model extremely versatile. 

 
The model presented here differs from many of the other causal models described in section 2.2. 

Rather than trying to construct a complex graph of causal relationships, it opts instead for a very 

simple structure. This model recognizes that, for a large variety of reasons, software productivity 

varies throughout the iterations of an agile project. It therefore learns the cumulative effect of 

these variations rather than trying to model their interactions explicitly. 

Users of the model only need to provide three items of information: 

1. available effort over the timescale of the project, 

2. measured project velocity as it becomes available, 

3. the extent to which XP practices are varying between iterations. 

The first two should be available anyway in any XP project and the third can be supplied using 

subjective judgment. The burden to developers and managers in maintaining this model is 

therefore minimal. In return for this small overhead, projects get improved PV predictions such as 

in Fig.   24 and a quantitative assessment of the risk, as in Fig.   25. 

A similar approach can be used to create a defects prediction model, with the effort model as 

one of its primary inputs. This allows a family of models to be constructed which represent a wide 

variety of XP environments and which can be used to model either effort alone, effort plus 

defects, or cost versus time trade-offs. 
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