Transactions on Software Engineering

Predicting Project Velocity in XP using a Learning Dynamic Bayesian

Network Model

Journal: | Transactions on Software Engineering
Manuscript ID: | draft
Manuscript Type: | Regular

Keywords:

D.2.18.e Software process models < D.2.18 Software Engineering
Process < D.2 Software Engineering < D Software/Software
Engineering, D.2.17.i Programming paradigms < D.2.17 Software
Construction &It; D.2 Software Engineering < D
Software/Software Engineering, D.2.18.c Process measurement <
D.2.18 Software Engineering Process < D.2 Software Engineering
< D Software/Software Engineering

& scholarone"

Manuscript Central

http://mc.manuscriptcentral.com/tse-cs

Page 1 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 1

Predicting Project Velocity in XP using a
Learning Dynamic Bayesian Network Model

Peter Hearty, Norman Fenton, David Marquez, Martil N

Abstract-- Bayesian networks have the ability to combine spars#ata, prior assumptions and expert judgment into a
single causal model. We present such a model of an ExtrerReogramming environment and show how it can learn
from project data in order to make quantitative effort predictions and risk assessments. This is illustratedith the use
of a real world industrial project.

Index Terms— extreme programming, Bayesian nets, causal models, risk assment

1. INTRODUCTION
Extreme Programming (XP) is one of several iteratipproaches to software development,

collectively known as “Agile” methods [31]. It consigi§ a collection of values, principles and
practices as outlined by Kent Beck, Ward Cunningham and Jetines [20] [21] [22]. These
include most notably: iterative development, pair progremgmcollective code ownership,
frequent integration, onsite customer input, unit tesang, refactoring.

XP emphasizes a lightweight, often informal approacterdlare no large-scale requirements,
analysis and design phases, and so there are none wadit@nal metrics associated with the
requirements or design phases, such as Function Points If86¢ad, the customer and
development team agree a series of User Stories (odciater) that concisely define the
requirements. The definition of a User Story is nowa# defined as a Function Point. As such,

User Stories are currently of limited value in predgteffort or quality. Yet managers of XP

Manuscript received August 9, 2006. This reseascfunded through eXdecide (EPSRC Grant RefereneéC@5406/1) and an associated
CASE award from Agena Ltd.
Peter Hearty and David Marquez are with Queen Mainyiversity of London, UK (+44 20 7882 7896, e-mdiearty@dcs.amul.ac.uk

marquezd@dcs.qmul.ac.uk).
Norman Fenton is with Queen Mary, University of Hon, UK (+44 20 7882 7860, e-maibrman@dcs.gmul.ac.ykHe is CEO of Agena Ltd.
Martin Neil is with Queen Mary, University of LondpUK (+44 20 7882 5221, e-mail: martin@dcs.gnalk). He is CTO of Agena Ltd.

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 2 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 2

projects have just as great a need for such predictiona@agers on any other software project.

Management gets some indication of the effort requireddan the developers’ estimates for
completing user stories, but these only cover time speriing directly on the user stories. They
do not cover other overheads. Managers need to knowabowrate developers’ estimates are
and how they translate to calendar time. Only thenacproject manager determine how long the
project will actually take to complete. This paper addmesisis problem by exploiting ideas on
causal modeling that have led to improved effort and quatiégiction for traditional software
development.

Fenton and Neil [10] explained the rationale behind trgatausal models of the software
development process using Bayesian Nets (BN). BNs thifeadvantage of being able to reason
in the presence of uncertainty, prior assumptions arahpltete data. They can intermix expert
judgment, statistical distributions and observations gingle model. Further, they are able to
learn from evidence in order to update their prior lelidh an iterative development
environment, such as XP, we can take advantage oketmnsing capability, where information
obtained from early iterations in the project can used to adapt a model to the local
environment.

This paper presents a BN modelRybject Velocity(PV), the one management metric that is
always available in XP. Roughly speaking, PV can be thooglas "productive effort per
iteration". The exact definition of PV is given ircgen 3.2.

We set the following key requirements that the model isaitssfy.

1. It must monitor and predict PV, taking into account ithpact of relevant process
factors.

2. For computability reasons, the core model must bg ssll. This enables it to be

http://mc.manuscriptcentral.com/tse-cs

Page 3 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 3

replicated multiple times in order to represent the maltipérations of an agile
development environment.

3. The model must be able to handle different types @f fdatdifferent environments. In
particular, the model must handle key XP practices, vidgleg dependent on none of
them.

4. The model must be capable of replicating empirical \behaln particular, many
projects report low initial productivity, gradually rising subsequent iterations [6], [7]
and [4].

5. The model must learn from data, either as a resuttbsérvations or as a result of
expert judgment entered as evidence.

6. It must give useful and clear advice to managers.

The main contribution of this paper is to introduce aatidate dynamic Bayesian nets as a
means of modeling iterative software development. P¥ @atollected from the first iteration in
any XP project. This is incorporated into the modehbding it to learn key parameters and
increase the confidence of its predictions in subsedtexations. We show that, with very little
data, it is possible to correct the model's prior assiomptand quickly produce accurate models
of PV with associated risk assessments.

The remainder of this paper is organized as followsseletion 2 we discuss related models,
both models of XP and other BN models of the softveangineering process. Section 3 covers
some of the definitions needed by the model. Sectiorgepts the model itself. Section 5 covers
model behavior using hypothetical data while section I@lateas the model using a real XP
project. Section 7 discusses the implications of the taududing threats to its validity and

some conclusions.

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 4 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 4

2. ReELATED WORK

We discuss related work under two headings. We first exaatimer predictive models of XP

development, before going on to describe BN models cddftevare development process.

2.1. Extreme Programming Predictive Models

Wiliams and Erdogmus [18] developed a Net Present Value INBY] model of Pair
Programming (PP) — one of the key practices advocatedPbyNRV models take into account
the fact that earnings in the future are worth leas the same dollar earnings today. The model
combines:

1. productivity rates,

2. code production rates (derived from the literature),
3. defect insertion rates

4. and defect removal rates.

Using empirical values for PP productivity and delivered adeafates [23] [24] [25], the model
predicts that pair programming is a “viable alternatovantlividual programming”.

Padberg and Miiller [26] also created an NPV model of XeirThodel uses market pressure
as the principle means of discounting the NPV. The medsl tested under various different
assumptions about performance and defect rate improvemedaes PP. The results indicate that
the value of both of these parameters is crucial. Wharket pressure is high, and there is
sufficient improvement in both LOC and defect rateentRP can indeed deliver an advantage.

Several groups have constructed System Dynamics (SD)I8/od&P. SD models a system as
a collection of stocks, flows and feedback loops, andfiistsapplied to software engineering by

Abdel-Hamid [28]. Misic, Gevaert, and Rennie [27] attempitechodel the interaction of various

http://mc.manuscriptcentral.com/tse-cs

Page 5 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 5

XP practices. They particularly concentrated on pair @nogring, refactoring, test driven
development and iterative development. Simulation resudisated that XP has an advantage
when pairs worked well together and did not swap frequently.

Kuppuswami, Vivekanandan, and Rodrigues [29] also created and8Bl. They were able to
successfully simulate the flattened cost of change alai@ed by Beck [21] (p. 23).

Cau et al [32] developed a custom simulation to model thgr¥eess, calibrated using data
from a real XP project. Once calibrated, their modas \able to reproduce empirically derived
results [33] about the effects of test driven developrfeme of the recommended XP practices).

All of the above provide explanation, insight or validatof XP techniques. What none claims
to do is offer combined prediction and risk assessmergrfgect managers. This can be achieved

using causal models, which are now being used effectivédgditional software engineering.

2.2. Bayesian Net Models in Software Engineering

Probability of
finding defects

™y
Defects Found

= Defects In - Defects Found

= Binomial [Defects in, Probability of finding defects)

Tk
Defects Out

A Bayesian Net (BN) [1] is a directed acyclic graph (saslthe example shown in Fig. 1),

Fig. 1 An example of a Bayesian Network

where the nodes represent random variables and theediraccs define causal influences or
functional relationships. Nodes without parents (sucthasProbability of finding defects” and

“Defects In” nodes in Fig. 1) are defined through tpeor probability distributions. Nodes with

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 6 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 6

parents are defined through Conditional Probability ibistions (CPDs). For some nodes, the
CPDs are defined through deterministic functions of fhaients (such as the “Defects Out” node
in Fig. 1), others (such as the “Defects Found” nod€ign 1) are defined as standard
probability distribution functions.

As explained by Fenton and Neil [10], BN models have ra¢\advantages over regression
based models. BNs do not rely on point values of parasétat have been derived through
some “best fit” procedure. Instead, the whole distrisutda variable is included. Similarly, BN
models don't just predict a single value for a varialtleytpredict its probability distribution. By
taking the marginal distributions of variables of ins¢yeve get a ready-made means of providing
guantitative risk assessment.

When a variable is actually observed, this obsematan be entered into the model. An
observation reduces the marginal probability distributtorthe observed variable to a probability
of 1 for the observed state (or a small interval ammg the value in the continuous case) and
zero otherwise. The presence of an observation uptlaee€PD of its children and, through
Bayes theorem, the distributions of its parents. lis thay observations are propagated
recursively through the model. BN models can therefore teptieeir beliefs about probable
causes and so learn from the evidence entered intondlel. More information on BNs and
suitable propagation algorithms can be found in [1] and [5].

Fenton, Neil, and others have gone on to develop assefiBN models, culminating in the
AID tool [13], the MODIST models [14], and the extensivals of revised models at Philips
[15]. A similar model has been developed by Siemens [349dsd@ models were used to provide
improved methods of risk assessment for project managats,special emphasis on defect

predictions and effort prediction.

http://mc.manuscriptcentral.com/tse-cs

Page 7 of 35

Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 7

Several other groups have also researched the use diaB&d software process models.
Wooff, Goldstein, and Coolen [17] have developed BNs magl¢he software test process while
Stamelos et al [35] used COCOMOS81 cost factors to buildNan®del of software project
productivity. Bibi and Stamelos [16] have shown how BlEs be constructed to model IBM’s
Rational Unified Process.

While these models can be adapted to agile developmentsses; they are not specifically
targeted at such environments. Agile methods, such asapéRcharacterized by highly iterative
approaches to software development. If each iteragidoreated as if it were a mini-project in its
own right, then existing models would quickly result in BMsich are unmanageable, laborious
to maintain, and computationally infeasible. Whatasded is an extremely small core model that

can be extended as needed.

3. DEFINITIONS AND TERMINOLOGY
The basic unit of work in XP is thdser Story When an XP iteration finishes, the estimated
efforts for the completed user stories are added togatheneate the Project Velocity (PV). In
the sub-sections that follow we describe how useiest@nd PV are defined, and how they are

incorporated into the model

3.1. User Stories
Developers assign the effort that they believe is reduor them to design, code and test each
user story. Efforts are estimated using a unit catledl Engineering Day$§lEDs). This is a day
devoted entirely to user story completion, free fronerbgads and distractions. It includes
detailed design, coding, unit testing and acceptance teHtiegcludes all other effort that can

consume developers’ time, including but not limited to achtnative tasks, mentoring, support

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 8 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 8

and learning.

We denote the estimated effort for jleuser story in iterationby Uy

3.2. Project Velocity
Once iteration is complete, the estimates for the completed uselestare added together.

This is the project velocity; for iterationi.

V = ZUij Eq. 1

j completednii

Assuming that the next iteration,+ 1, is the same length, the customer selects thestigh
priority uncompleted user stories whose estimated IEDsteuvi These user stories are then
scheduled for iteratiom + 1. The work scheduled for iteration+ 1 therefore has the same
estimated ideal effort as the estimates for the aetaed completed in iteration

Note that the actual effort to complete a user stnot used here. To relate actual productive
effort to estimated productive effort (i.e. PV), wearddtuce a biady;, into the model. Note that
the word “bias” is not intended in the statisticalsseof a biased estimator.

If Aij are the actual efforts taken then:

Zuii v Eq. 2
YA TSA

3.3. Process factors
To model the relationship between total effort and e is a single controlling factor which
we call Process Effectiveness, Process Effectiveness is a real number in the r§hdé¢ A

Process Effectiveness of one means that all ala#dtort becomes part of the productive effort.

http://mc.manuscriptcentral.com/tse-cs

Page 9 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 9

The Process Effectiveness is, in turn, controlletiay further parameters: Effectiveness Limit,
I, and Process Improvememt, The Process Improvement is the amount by whichPtloeess
Effectiveness increases from one XP iteration t® mext. To allow for failing projects, the
Process Improvement can take on negative values.

The Effectiveness Limit recognizes the fact thatetae often limits to how productive a team
of people can be. Effectiveness Limit is therefore mhaximum value which the model allows
Process Effectiveness to take.

Note that all of this relies on minimal assumptioeffort either contributes to delivered
functionality, or it does not. The ratio between protkeceffort and total effort exists whether
we call it Process Effectiveness or not. This ratioes between iterations and has a limit, even if
the limit is unity. As the core model contains vaesalbased only on these factors, it too is based

upon minimal assumptions.

4. BAYESIAN NET MODEL
The BN used to model project velocity is shown in Fi@. Table 1 summarizes the model
variables for the BN. Measures of effort are denotgddpital letters. All other variables use
lower case letters. Subscripts are used to denote dicpdtiiteration. For examplg, denotes
the velocity in iteration 2. Where the iteratiomist important, we drop the subscript and refer

simply toV.

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 10 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 10

Fig. 2 Project velocity model

When we wish to distinguish between a model predicti@heameasured value, we will use an
underscore to denote the measurement. Boif the predicted value for the velocity at iteration

three, then/; is the measured value.

Table 1 Symbol definitions
Symbol Meaning
d Number of working days in iteratidnd; = 0, 1, 2, ... This is an integer value.

pi Number of team members in iteratiorThis can be fractional if one or more people do not
work full time on the projecig [[0,).

S Productive effort to dates = s, +V; =2V, 5 [0 [0,0).
E Iteration effort in man-day%; = p; x d;, E; O [0,).
U} Estimated effort of" user story in iteration U/ O [0,00).
A Actual productive effort in iteration A; = E; x e, A [0 [0,00).
Vi Project Velocity in iteration. V, = ZUi’ ,V; 0 [0,00).
j
b Estimation biasb; = V, / A, b; 00 [0,00).
fi Load Factor in iteration f; = E; / V;, f; 0 [1,5]. Used to estimate timescales. The upper limit
is arbitrary.
e Process effectiveness in iteratioty; = E; x e, g [0 [0,1].
l; Effectiveness limit. The maximum value that thean takel; 0 [0,1].
ri Process improvemeng. = min @4 +r;, ;) , r; O [-1,1].

Not all of the variables shown in Table 1 are showirig. 2. Several of the variables are
included only to make the definitions of others morerogs ¢, andp). Some exist to relate the
model to XP conceptd$ andU), and others to relate the model to management cangpt

Before presenting the model in detail, we need to disaussv preliminaries about Dynamic

http://mc.manuscriptcentral.com/tse-cs

Page 11 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 11

Bayesian Nets.

4.1. Dynamic Bayesian Networks

Dynamic Bayesian Nets (DBN) extend BNs by adding a teatptimension to the model.
Formally, a DBN is a temporal model representing a dinagstem, i.e. it is the system being
modeled which is changing over time, not the structurégh@ietwork [8]. A DBN consists of a
sequence of identical Bayesian Nefg, t = 1,2,..., where each represents a snapshot of the
process being modeled at timéNe refer to eacl; as atimeslice For XP, where the software
production process is split into a series of discretatitans, this is a particularly apt approach.

The models presented here are all first order Markoi. Mbans that 2 | Z;..1) = P&: | Zt.1)
(informally, the future is independent of the past givea present). The first order Markov
property reduces the number of dependencies, making it compatigt feasible to construct
models with larger numbers of timeslices. Consistenpggation is achieved using standard
Junction Tree algorithms [5]. Junction tree algorithnms/jole exact (as opposed to approximate)
propagation in discrete BNs and are generally regarded asgamme most efficient such
algorithms [30].

Nodes that contain links between two timeslices aferred to as link nodes. Fig. 2 shows a
single timesliceZ;, t =1,2...., but with the link nodes from the previous tilcesshown lightly
shaded. The link nodes to the next timeslice are shddekl Fig. 3 shows the same model, this
time “rolled out” as a three iteration DBN (link nod® shaded).

The models in this paper were implemented using the AgskdBolset [3]. This was due,
amongst other things, to its ability to build dynamicdels, to handle continuous variables and

the availability of a wide range of built-in conditidpaiobability functions.

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 12 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 12

tteration1

Fig. 3 Model as a DBN

4.2. Parameter Learning
The process effectiveness limif) (, rate of process improvemenmf) (and biasl§) are the key
parameters in this model. Between them they cortteoptocess effectiveness node, which in turn
controls the velocity node. It is important that thedel is capable of adjusting these parameters
as a result of entering data about the project. In péaticthe model must respond to

observations of th¥ ;.

4.3. Iteration Model
The BN shown in Fig. 2 is used as a single iteratiodehfor project velocity. The model is
best thought of as comprising three distinct fragments.
Fragment 1 controls the Productive Effort (Fig. 4).idglke variable, Process Effectiveness
(e), is assumed to determine the Productive Effort. Highc&ss Effectiveness means a high
Productive Effort and a correspondingly high velocity. dess Effectiveness increases or

decreases based on the value of the Process Improv@mdhis constrained to the range [0,

http://mc.manuscriptcentral.com/tse-cs

Page 13 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 13

The CPD ofi; is a function ofl;.;. In this casd; is set equal td.;. The process effectiveness
limit (1;) is really a single variable which is global to tatheslices. Copying it between timeslices

allows us to preserve the first order Markov propertyil&ily r; is just a copy of;.;.

=min(; + 6.4, 1)

Fig. 4 Fragment 1 - Process effectiveness nodes

Fragment 2 contains the "effort" nodes (Fig. 5). hhbimes the total Iteration EfforE{() with
the process effectiveness)(to create the actual Productive Effof)(Note that, although is
not required by the XP methodology, we need it in thislehéor reasons that will be explained

below. We do not expeét to be observed in real projects.

Fig. 5 Fragment 2 - Effort nodes

Fragment 3 holds the project velocity (Fig. 6). Velpcin either be predicted by the model
(Vi), or once an iteration is completed, it can be edtexrs evidenceV() and used to learn the
model parameters. The bids, allows for any consistent bias in the team’s reéfesstimation. If
there was no bias then the productive effértwould be the same a&sand there would be no

need to distinguish between the two.

B @ v)=bA

Fig. 6 Fragment 3 - Project Velocity

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 14 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 14

4.4. Setting the initial conditions

An initial timeslice, Iteration 0 (shown in Fig. 79,used to set the initial model conditions.

Fig. 7 Initial Velocity model

For iteration O, the prior distributions of the inputeetiveness limitlg), process improvement
(ro) and process effectivenesg)(are all set to be normal distributions, with vacies of 0.3 and
means of 0.8, 0.2 and 0.3 respectively. These values agd basa controlled case study by
Abrahamsson and Koskela [7], where process effectisaraged between 0.4 and 0.75. We have
simply extended this range slightly and chosgeso that the lowest to highest transition can take
place within four iterations.

The prior of the estimation biadf is set to a log normal distribution with a mean of
approximately 1.0, and a variance of 0.1. The log normailison follows from the fact that
the bias cannot be less than zero but has no upper Heamdxample, a pessimistic bias, where
estimates are 2 times the actual, results in a bids whereas an optimistic bias results in a bias
of 0.5. This distribution is confirmed empirically, foraanple by Little [12].

The choice of these priors is discussed further in @@ntlusions and Discussion” section of

this paper.

http://mc.manuscriptcentral.com/tse-cs

Page 15 of 35 Transactions on Software Engineering

Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 15

Evidence is entered in all of tlig nodes so the prior distributions these nodes havefext.ef

5. MoODEL BEHAVIOR

Fig. 8 shows the predicted values of the PV for a hygtotd project with 10 iterations and
50 hours of effort available in each iteration (Ee= 50,1 = 1,...,10). The central dotted line is
the mean, with the outer dotted lines showing +/- daadsard deviation. The solid line is the
median value. This is based solely on the model'simtnditions.

The Process Effectiveness increases with eachtiiterly an amount equal to the Process
Improvement. It flattens out as it begins to hit tHee&iveness Limit. As can be see from the
graph, this leads to the PV starting fairly low and grdguadreasing with each iteration. Being

able to model and predict this type of behavior wasafitiee main objectives of the core model.

Observed Velocity
50.0

47.5 e -

B

45.0 -

425 "

400 7

375

35.0

325
z 30.0
__g 27.5

S 25.0
2225
£ 200
© 175
15.0
125
10.0
75
5.0
2.5
0.0
25

= Median(Baseline)
-+ Mean-sd(Baseline)
-+ Mean+sd(Baseline)

-+ Mean(Baseline)

Iteration

Fig. 8 Project velocity values — median, mean, mean =1 SD

This is our “Baseline” scenario, with no PV evidemeeered into the model. By entering PV

evidence, we can construct various alternative saenand compare the learned parameters and

predicted values of future PV. The values shown in Taleei2 used to construct three such

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 16 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 16

scenarios, all based on 50 hours of available efforit@etion. No values were entered Yaror
V1o, allowing the model to predict these values. These septeprojects that are respectively
failing, performing as expected, or progressing with greatess. We refer to these as the
“Failing”, “Average” and “Success” scenarios respectfully

Note that the “Success” scenario uses deliberatehalistie figures in order to test the range
of the model.

Table 2 - PV values for three scenarios

Scenario\lPV|Vi V>, Mz My, Vs M V7 M
Failing 2 3 3 4 4 3 4 4
Average 20 25 27 28 28 29 30 31
Successful 200 205 210 215 219 223 225 227

5.1. Parameter Learning in Different Scenarios

Fig. 9 shows the resulting distributions of the biadenb,,. There are four distributions, one
for each scenario. The “Failing”, “Average” and “Basel scenarios have mean values close to
one, although both the Failing and Average scenarios heduced variances compared to the
baseline. The reduced variances are to be expectedsftenarios where evidence has been
entered.

In Fig. 8 the Baseline scenario predicted value¥fdo Vs in the range 18-30. However the
Success scenario entered evidence in the range 200-227timgdibat the project team has done
200-227 estimated IEDs in a single iteration with only 50-dwys of effort. Clearly this can only
come about if their estimates are significantly liasend indeed, the model suggests that the bias
in this case has a mean value of 4.3. This only acsdantpart of the high PV values however.
The remainder is accounted for by an increased effawss limit (Fig. 10) which allows a

greater process effectiveness.

http://mc.manuscriptcentral.com/tse-cs

Page 17 of 35 Transactions on Software Engineering

Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 17
] Average
Mean O.
o | a2 v:ra g 3(?1 Success
= ' Mean 4.3
< oa / Var 0.016
o | ™
o
o .
Failing ‘ Baseline
Mean 0.64- ..| | Mean 1.05
Var 0.03 Var 0.1

Bias

Fig. 9 Bias distribution, iteration 10

Suscess Baseline
/
/7

Y /
Effectiveness Limit POST 4
0.80 7/ //
7 4

0.75

0.70 4

0.65

0.60

0.55 Average
G
8 0.50
I
E 045
= = Median(Baseline)
ol
5 0.40 -+ Median(Failing)
g 0.35 -+ Median(Average)
g 0.30 +Median(Success)

0.25

0.20 Failing

0.15

0.10

0.0

0.00

0 1 2 3 14 5 6 7 8 9 10

Tteration

Fig. 10 Effectiveness Limit, median, 5 iterations

As we might expect, the Failing scenario shows a pfiectereness limit and a very small
improvement in process effectiveness (Fig. 11). Sunghsithe success scenario shows an even

worse process improvement. However, this is becaesedliel is forced to assume a very high

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 18 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 18

process effectiveness in the initial iterations. Vakes provided are so far outside the normally
expected range that the model is continually trying topensate by bringing the process

effectiveness back down again. By iteration 6 the psoipegrovement finally begins to stabilize.

Process Improvement POST

0.30

Average
0.25

0.20

Baseline

0.15

0.10

Falllng - Median(Baseline)
- Median(Failing)
0.00 -+ Median(Average)

-+ Median(Success)

0.05

Process Improvement POST

-0.05
-0.10
-0.15

Success

-0.20

Tteration

Fig. 11 Process Improvement, median, 5 iterations

Both the Effectiveness Limit (Fig. 10) and the Predegprovement (Fig. 11) change as
evidence is entered in the first eight iterations. oelel therefore learns as new evidence is
entered and changes its predictions accordingly.

Fig. 12 shows the behavior of the Bias ndslein the Average scenario. The central dotted
line, which is almost co-incident with the solid lirhows the mean and median values
respectively. The outer dotted lines show the rdedrstandard deviation (SD). The SD gets
smaller as more evidence is entered into the modal.illlistrates that, not only does the model

learn the values of its parameters, but the uncertainhose values decreases as more evidence

becomes available.

http://mc.manuscriptcentral.com/tse-cs

Page 19 of 35 Transactions on Software Engineering

Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model

Bias POST

e —— = —— - — — -

0.8 I -5 it SN

= Median(Average)

0.7 =~~~ - Mean-sd(Average)

Bias POST
r
\

0.6 -+ Meantsd(Average)

-+ Mean(Average)
0.5

0.0*
0

Tteration

Fig. 12 Bias, Average scenario, median, mean 1 SD

5.2. Indicator Nodes

19

Indicator nodes are nodes with a single parent and fdreaini They are often used to provide

evidence for variables that are themselves unobdervhtdicator nodes are one of the main

mechanisms used to introduce XP practices into the model.

XP practices cannot be categorized as simply being “mgieed” or “not implemented”.

There are degrees to which various practices are addpaedexample, a team may choose to

program in pairs for complex parts of the code and progndmidually when writing routine

code. It is important therefore that XP practicesrapgesented by nodes with a sufficient range

of states to reflect the degree of variation of filractice within the project.

An indicator node for the Effectiveness Limit is shoiw Fig. 13: the “Collective ownership”

node. This is the extent to which collective code emship is practiced. It is a ranked node,

consisting of five discrete values ranging from Very LimwWery High. Ranked nodes allow the

user to enter a range of values for “Collective Owmipf's The probability of these five values is

derived from a truncated normal distribution whose medin and whose variance is arbitrarily

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 20 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 20

set to 0.1. This distribution ensures that a high degremlictive ownership leads to a high

effectiveness limit. The variance determines thengjth of the relationship. More information on

ranked nodes and the use of the truncated normal distrlzambe found in [11].

Collective
Ownership

Fig. 13 The "Collective Ownership" indicator node

Effectiveness Limit POST

0.95

0.90 .

055 High

0.80

0.75

0.70
g 0465 Baseline
S 0.60
E 0.55 i
3 M IX =+ Median(Baseline)
7 0.50 o
& 05 - Median(High)
£ 0'40 -+ Median(Mix)
8 -+ Median(Low)
H 035

0.30

0.25

0.20

013 Low

0.10

0.05

0.00

0 1 2 3 4 5 6 7 3 9 10

Tteration

Fig. 14 Effectiveness Limit with and without indicatornode evidence

With no evidence, the node plays little part in thedel, and its parenk, remains constant
from one iteration to the next (the “Baseline” smam). However, when we set the value of

“Collective ownership” in each iteration to "Veryigh" (the “High” scenario) then the situation

http://mc.manuscriptcentral.com/tse-cs

Page 21 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 21

changes. The evidence back propagatés Because of the learning mechanism described above,
the effect is cumulative and the mean value increagessiterations. The difference is shown in
Fig. 14.

Values entered into this node are examples of expert judgmbe ease with which expert
judgment can be combined with objective evidence and assumptions is one of the benefits of
the Bayesian Network approach to modeling.

Two other scenarios are also shown, one where tliecive Ownership node is always set to
“Very Low” (the “Low” scenario) and a slightly morealistic case (the “Mix” scenario). In the
Mix scenario, Collective Ownership starts off “Verpw”. However management realize that
there is a problem and take steps to improve collectwrership. By iteration 4 Collective
Ownership improves to “Medium” and by iteration 6 it asleis a “High” value.

The extent to which XP practices are implemented barefore have a dramatic effect on the
model parameters, which in turn propagates through to thielis predictions.

It is not necessary to include all XP practices a<atdr nodes in all iterations. If a practice,
such as pair programming say, is consistently maintaihéte same level in all iterations, then its
effect will be included in the learned values of the nhpdeameters. Only practices which affect
project velocity and which vary significantly betweiggrations, need to be included as indicator

nodes.

6. MODEL VALIDATION
We apply the model to an industrial case study (section &lfe model can learn from the
initial data entered from the project (section 6.2) adidsas its predictions once beneficial XP

practices are taken into account (section 6.3). Se6tibprovides an example of how the model

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 22 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 22

can be calibrated for a specific XP practice. Finaly§ection 6.5 the model provides predictions
for the time taken to deliver a fixed amount of funcaitig. These are in good agreement with the

actual functionality delivered.

6.1. The Motorola Project
Williams, Shukla and Anton [4] provided a detailed descriptban XP project developed at
Motorola. The project was developed in a series of atghations of between two and three
weeks duration. The number of people on the team vapedtiiree to nine over the duration of
the project. The full data set is shown in Table 3.

Table 3 — Motorola project data

i/r 2 3 4 5 6 7 8
d |15 15 15 16 12 10 8 10
pp |3 3 6 6 7 7 9 A4
EE |45 45 90 96 84 70 72 40
\Y

i 19 13 35 30 40 40 36 20

The definition of Project Velocity used by the Mot@aoéam corresponds to what we have called
Process Effectiveness. We will continue to use thaitieh given in Eq. 1. The values &
given in Table 3 have been calculated using our definition.

Initially we simply enter values fdg; into the model (no values f& entered). Fig. 15 shows
the resulting marginal distributions which are generabedhfeV; node. There is one distribution

for the node in each timeslice.

http://mc.manuscriptcentral.com/tse-cs

Page 23 of 35 Transactions on Software Engineering

Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 23
Iteration 8
Fay
E
@©
g i
o Iteration 1

Project Velocit

Fig. 15 Distributions for V; , one per timeslice

Observed Velocity

50.0 .
+s Predicted
45.0
42.5
40.0
37.5
35.0
g‘ 32.5
§ 30.0
5275
3 25.0
% 22.5
3
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0

Actual

1 2 3 4 5 6 7 8
Tteration

Fig. 16 Predicted vs. actual Motorola/ (medians)

The median values from thé distributions are shown in Fig. 16 (the “Predicted” gjaph
Actual values folv; are shown in the same figure for comparison (the “Atgraph). The large

“Actual” dip in iteration 4 is put down to a post-Christnmaglaise by the Motorola team.

6.2. Parameter Learning

There are a number of problems with the predicted valdéilg. 16. The most obvious is that,

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 24 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 24

apart from iteration 6, the predicted values are comgigtéoo high. In this section we
demonstrate how the model can learn from real proljet and quickly improve the accuracy of
its predictions.

The effect of this learning process can be seenkiygdhe “Predicted” scenario and entering
Vi observations for completed iterations. As each neaeepiof information is entered, back
propagation takes place, causing the distributions for tteehparameters to be updated. These

updated parameter distributions then affect the prediotibfugure iterations.

Observed Velocity

425 Actual

40.0
375
35.0
32.5
30.0

2275

g

S 25.0

2

= 225

8
5 200
g
D
2175

Predicted

15.0
125
10.0
7.5
5.0
253

0.0

Iteration

Fig. 17 Predicted vs. actuaV/, 2 observations

The graphs in Fig. 17 show the change in predicted valhes\Wy andV, have been entered.
The whole of the “Predicted” graph moves to lower valassthe model learns from the
observations. The predictions f@gs andV, improve as a result. However, the predicted values for
Vs, Vs andV; are significantly worse.

The Willams, Shukla and Anton paper [4] points out thatious XP practices were
implemented more effectively in later iterations.the next section, we show how this can be

incorporated into the model.

http://mc.manuscriptcentral.com/tse-cs

Page 25 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 25

6.3. “Onsite customer” as an Indicator Node
An indicator node for the Effectiveness Limit is slow Fig. 18: the “Onsite Customer”
node. This is the extent to which an authoritativet@usr was available to answer guestions
about requirements and provide feedback on developmenta itaisked node, consisting of five

discrete values ranging from Very Low to Very High. Tehescrete values define five equal,

discrete partitions of the real number range [0,1].

Onsite
Customer

Fig. 18 The "Onsite Customer" indicator node

The probability of these five values is derived frotnuencated normal distribution whose mean
is l;, and whose variance is set to 0.1. This distributicsuess that a high degree of customer
input leads to a high effectiveness limit.

It is important to emphasize that the values entertedtire “Onsite Customer” node must be
relative to the need for customer input. If the projeam have developed similar projects for this
customer in the past, or are themselves experts agblkecation domain, then constant customer
input may not be useful. In these circumstances a “Magl” value for “Onsite Customer” might
be appropriate, even if the customer is not physicatgent, but was still able to provide input

when needed.

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 26 of 35

Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 26
Effectiveness Limit POST
0:85 Onsite Cust .-+
0.80 e ’
0.75 . P
Predicted .
0.70 - v
0.65 _
. 3:: Learned
20
2 0so Actual
E
w 0.45
§ 0.40
g 0.35
000, 1 2 3 4 5 6 7 8

Iteration

Fig. 19 Effectiveness Limit with and without indicatornode evidence

Observed Velocity

125
400
37.5
35.0 ; i
325 ! N
30.0 g
2275
5
5250
5 /
< 225 ' 4
@ /
5 20.0
2
0 175
15.0

Actual
12.5

LCe Learned
751 .
so e Onsite Cust
25
0.0

Tteration

Fig. 20V with and without Onsite Customer evidence

Fig. 19 shows how the indicator node’s pareaffected by changes in its values. The central,
straight line shows the median from the Effectigsnkimit node’s distribution when only effort
data has been entered; this is the “Predicted”asmenWhen all thev; data is entered, then the
Effectiveness Limit varies throughout the projetite(“Actual’ curve). The “Learned” curve
shows the Effectiveness Limit that is learned wlmety V; and V, have been entered as

observations. This is the curve which is respoesibl the modified predictions shown in Fig.

17.

http://mc.manuscriptcentral.com/tse-cs

Page 27 of 35

Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 27

At the start of the 5th iteration, the Motorola tehad constant access to an onsite customer.
The “Onsite Customer” indicator node was therefordséVery High” for these iterations. The
result is the “Onsite Cust” curve. It shares the saalaes for the Effectiveness limit as the
“Learned” curve, until the values for the Onsite Custoimgicator node are modified.

The result of entering indicator node evidence is anamgment in the predictéd values, as

shown in Fig. 20.

6.4. Calibrating the Onsite Customer Node

The distribution for the “Onsite Customer” node is lbasa data from Korkala, Abrahamsson
and Kyllénen [9]. In their paper, four case studies areridbesl with varying degrees of customer
interaction. The percentage of effort devoted to fixitdects, including specification defects,
varied greatly in the four case studies. Where custampet ivas very high, only 6% of effort was
spent fixing defects. Moreover this level remained tamisacross iterations. At the other
extreme, when customer input was very low, the timetsfpeng defects grew across iterations
until it reached about 40% in iteration 3.

Our model does not explicitly include details of defecingxeffort (including requirements
defects); they are simply included as effort which dagscantribute tov. We therefore make the
following definitions and assumptions concerning theticeiahip between defect fixing effort and
non-velocity effort.

1. Define “Miscellaneous Effort'm, to be the fraction of effort that does not conttébto
completed user storieg; =V, + m.
2. Miscellaneous effort is composed of a variable cormpbdue to defect fixing efford,

and a set of fixed overheads, m = d; + 0;. This does not provide a full description of

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 28 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 28

miscellaneous effort, but it is adequate for this model.

3. When the onsite customer input is at its maximumreherk effort is at its minimum.

Onsite
Customer,

Fig. 21 BN used to calibrate the Onsite Customer node

With these assumptions in place, we can use the BNrsho#ig. 21 to calibrate the Onsite
Customer node. The algorithm proceeds as follows.
1. Aninitial guess is made at the Onsite Customer loligtoin.
2. The values ob; are chosen so that, when the Onsite customer noslt i®© “Very
High”, di produces a constant mean value of about 6% acrossatlons.
3. Modify the Onsite Customer distribution, with theuealset to “Very Low” until the
time spent fixing defects in iteration 3 is about 40%.

4. Repeat steps 2 and 3 until both conditions are satsfredtaneously.

The resulting defect effort percentages for each valuéOokite Customer” across four

iterations are shown in Fig. 22. These are sinoldhé empirical curves of Figure 3 in [9].

http://mc.manuscriptcentral.com/tse-cs

Page 29 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 29

Defect Effort
0.55

0.50
0.45

0.40

=
W
by

Defect Effort
=)
w
S

Medium

0.15 / H ig h
0.10

o

008 Very High

0.00

1 2 3 4
Tteration

Fig. 22 Defect effort % for each Onsite Customer settg

6.5. Timescale Prediction

Fig. 23 shows a slightly modified version of the velp@iagment of the model. This includes

an additional link nodes, which acts as the cumulative sum\vatio date.

=S1+V,
Fig. 23 Project Velocity summed to date
Plots ofs for the initial prediction, the learned prediction ahd actual scenarios are shown in
Fig. 24. If the total estimate to complete the enpreject is, say, 200 IEDs, then we can
immediately read off from the graph how long it will tatkecomplete the project.
The initial predictions of the model are too optimistitowever, once the model has learned
from the V; and V., observations, and account has been taken of theeonisgtomer, the

predictions are virtually indistinguishable from the attudcome.

http://mc.manuscriptcentral.com/tse-cs

300

275

250

User Stories Completed POST
- = - -

o s B T a9 S

S o S o = D

I~
b

o

Cumulative probabilit

Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model

User Stories Completed POST

Initial
Actual

,,,,,,,,,,,,,,,,,, Learned

=)
—
>
w
=
o
=N
-

Tteration

Fig. 24 Sumv; to date

os | 65%

/

-
/
e
s
og |

07 |

/ /Initial 25%
o4 | { ,"'

03 |

oz |

0.1 |

0o |

s

Learned +~——————

nnv-nﬂz|

0°0Z) - 000k
oork - O'OZL_-‘
008l -0 OVL_

3

4

4

T

4

z

E-
0°0ZE - 0'00E
oove - 0°0ZE
0°08E - 0'0FE
0°0BE - 0'0SE

IEDs completed after 8 iterations

0007 - 0'0BE

Fig. 25 Iteration 8 cumulative distributions

0°00% - 000

30

Page 30 of 35

The Motorola project completed 224 IEDs of functionaliyaoe the project ended. The model

can quantify the uncertainty involved in completing 224 |&iitkin 8 iterations. Fig. 25 shows

the cumulative distribution functions for tlsenode in iteration 8. The vertical line allows us to

read off the probability of completing up to 224 IEDs by émel of the 8th iteration. For the

“Initial” scenario, there is only a 25% chance of gdgting up to 200 IEDs. Once the model has

http://mc.manuscriptcentral.com/tse-cs

Page 31 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 31

learned fromV, andV,, the probability is revised up to a 65% probability. Tinisans that the
model was initially too optimistic in its predictiona 65% chance of delivering up 824 IEDs

means a 35% chance of delivermgre than224 1EDs).

7. CONCLUSIONS ANDDISCUSSION

We have developed a model of XP project velocity and shthat it reproduces known
empirical behavior from iterative projects.

The model has been applied to a real industrial projgobrporating data from the early part of
the project enabled the model to update its parameteimpralve its predictions. When this was
combined with knowledge about the presence of an onsstermer, the model was able to make
extremely accurate predictions about the level of fonelity delivered over time. Other XP
practices can be incorporated in the model using sitetdmiques.

While the model presented here has successfully demmustige benefits of using a learning
BN model in XP projects, we recognize that there aremaber of threats to its validity.

1. The model relies on having sufficient degrees of freetiolearn from its environment.
This is principally accomplished by updating the parametdesl; andr;. It is possible
those are insufficient to accommodate the full rangeettviors of real XP projects, or
that some future XP practices cannot be wholly accomateal as indicators of one of
these nodes.

2. Only a single industrial test case has been usedteBiEmfidence in the model will be
achieved through exposure to a greater variety of deta set

3. The example shown had the benefit of real efford ffatm a completed project. At the

start of a project, only projections of availableogffare available.

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 32 of 35
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 32

4. No sensitivity analysis has been performed on thaefrpriors in Iteration 0. This is not
an especially serious concern because, regardless dafitthevalues, the model will
adapt to the current project’s local conditions as sa®ithe first few iterations are
completed. Clearly, any change in the means or start#aidtions of the priors will
affect the model's initial predictions. We would expelatt more mature software
development organizations would replace the supplied valutbsdigtributions based
on their own previous metrics programs.

5. Two XP practices have been included in the model: |éCwle ownership”, using
hypothetical data, and “Onsite customer”, using data fiaimgle study. Empirical data
on the effectiveness of other XP practices needsetaided in order to calibrate
appropriate indicator nodes.

Despite these concerns, there are a number of deafits to this approach.

1. Although prior metrics information is valuable, ategsive data collection phase is not
essential. The model starts off making generic preditibnt quickly alters them as
local data becomes available. Developers tasked withicseollection therefore see an
immediate benefit from doing so: predictions about tbein project will improve as a
result. Contrast this with traditional metrics callen programs, which often founder
because of the need for long-term commitment.

2. Empirical data, project data, prior assumptions and ejypmgiment are combined in a
single intuitive, causal model.

3. The predictions provide probability distributions, ngtjsingle values. The model tells
you what the chances of various outcomes are.

4. Provided suitable empirical evidence is availables relatively simple to add new XP

http://mc.manuscriptcentral.com/tse-cs

Page 33 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 33

practices or other environmental features, making tha@efrextremely versatile.

The model presented here differs from many of the atdwesal models described in section 2.2.
Rather than trying to construct a complex graph of caeaionships, it opts instead for a very
simple structure. This model recognizes that, for a laegety of reasons, software productivity
varies throughout the iterations of an agile projecthérefore learns the cumulative effect of
these variations rather than trying to model theéerections explicitly.

Users of the model only need to provide three itemisf@fmation:

1. available effort over the timescale of the prgject
2. measured project velocity as it becomes available,
3. the extent to which XP practices are varying betwieations.

The first two should be available anyway in any XPjgmband the third can be supplied using
subjective judgment. The burden to developers and managersmimiaining this model is
therefore minimal. In return for this small overhepibjects get improved PV predictions such as
in Fig. 24 and a quantitative assessment of the rigk,Fag. 25.

A similar approach can be used to create a defects poediobdel, with the effort model as
one of its primary inputs. This allows a family of misd® be constructed which represent a wide
variety of XP environments and which can be used taeneither effort alone, effort plus

defects, or cost versus time trade-offs.

http://mc.manuscriptcentral.com/tse-cs

Transactions on Software Engineering Page 34 of 35

Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 34

REFERENCES

[1] Jensen, Bayesian Networks and Decision Grefisnger-Verlag, New York, 2001.

[2] Brooks FP, The Mythical Man-Month: essays oftveare engineering, 2nd edition, Addison Wesley93.9

[3] AgenaRisk User Manual, Agena Limited, www.aggéstacom.

[4] Williams L, Shukla A, Anton Al, An Initial Expration of the Relationship Between Pair Programgnaind Brooks’ Law, Proceedings of the
Agile Development Conference (ADC'04)

[5] Lauritzen, S. L. and Spiegelhalter, D. J. Locainputations with probabilities on graphical stawes and their application to expert systems
(with discussion). J.R. Statistical Soc. SerieS®,no. 2, pp. 157-224, 1988

[6] Ahmed, A.; Fraz, M.M.; Zahid, F.A., Some resutif experimentation with extreme programming parad 7th International Multi Topic
Conference, INMIC 2003. Page(s): 387- 390

[7] Abrahamsson P, Koskela J, Extreme Programnfin§urvey of Empirical Data from a Controlled Casady, 2004 International Symposium
on Empirical Software Engineering (ISESE'04), (82

[8] K. P.Murphy. Dynamic Bayesian Networks: Repraation, Inference and Learning. PhD thesis, Utk&ey, 2002.

[9] Korkala M, Abrahamsson P, Kyllénen P, A Casedyton the Impact of Customer Communication on Eisfan Agile Software Development,
Proceedings of AGILE 2006 Conference (AGILE'06)

[10] N. E. Fenton, and M. Neil, "A Critique of Sefire Defect Prediction Models," IEEE TransactionsSoftware Engineering, 25(4):675-689,
September 1999

[11] Fenton NE, Neil M and Caballero JG, "Using Rechnodes to model qualitative judgements in Bayebietworks" to appear in IEEE TKDE
2007, http://www.dcs.qmul.ac.uk/~norman/papers/

[12] Little T, Schedule Estimation and Uncertaityrrounding the Cone of Uncertainty, IEEE SOFTWAR&y/June 2006

[13] Neil, M., Krause, P., Fenton, N. E., Softwa@eality Prediction Using Bayesian Networks in Safter Engineering with Computational
Intelligence, (Ed Khoshgoftaar TM), Kluwer, ISBNAD20-7427-1, Chapter 6, 2003

[14] Fenton, N. E., Marsh, W., Neil, M., Cates, Forey, S. and Tailor, T. Making Resource DecisfonSoftware Projects. In Proceedings of 26th
International Conference on Software Engineeri@$e 2004), (Edinburgh, United Kingdom, May 2004t EEComputer Society 2004, ISBN
0-7695-2163-0, 397-406

[15] Neil, M. and Fenton P. Improved Software Defeediction. 10th European SEPG, London, 2005.

[16] S.Bibi, I.Stamelos, Software Process modelvith Bayesian belief Networks, 10th Internationaft®%are Metrics Symposium Chicago,
September 2004

[17] Wooff D.A., Goldstein M., Coolen F.P.A., Bayas Graphical Models for Software Testing, |IEEE fgactions on Software Engineering, Vol
28, Issue 5, pp. 510-525

[18] Williams, L. and Erdogmus, H., On the EconorRigasibility of Pair Programming, International \k&fiop on Economics-Driven Software
Engineering in conjunction with the Internationar@rence on Software Engineering, May 2002.

[19] Ross, S. A. Fundamentals of Corporate Finamag/McGraw-Hill, 1996.

[20] Beck K, Andres A, Extreme Programming Explaifembrace Change, Addison-Wesley Professionaljt®edNovember 16, 2004)

[21] Beck K, Extreme Programming Explained, Embr@bange, Addison-Wesley Professional; 1st edit2iiD()

[22] Extreme Programming Installed, Ron JeffriesnfAnderson, Chet Hendrickson, Addison-Wesley Beifmal ; 1st edition.

[23] A. Cockburn and L. Williams. The costs and éféa of pair programming. In eXtreme Programmingl &lexible Processes in Software
Engineering XP2000, Cagliari, Italy, June 2000.

[24] J. Nosek. The case for collaborative prograngnCommunications of the ACM, 41(3):105-108, M&398.

[25] L. Williams, R. Kessler, W. Cunningham, andJeffries. Strengthening the case for pair-progralgnEEE Software, pages 19-25, July/Aug.
2000.

[26] Padberg F, Muller M, Analyzing the Cost andnBfit of Pair Programming, Proceedings of the Nifmtkernational Software Metrics
Symposium (METRICS’03)

[27] Misic, V., Gevaert, H., Rennie M. (2002) “Eaine dynamics: modelling the extreme programminyvané development process ”. Workshop
on empirical evaluation of agile processes, XPglhiverse 2002

[28] Abdel-Hamid T, "The Dynamics of Software P Staffing: A System Dynamics Based Simulatiorpiyach,” IEEE Transactions on
Software Engineering, vol. 15, no. 2, pp. 109-111989

[29] Kuppuswami, S., Vivekanandan K., and Paul Rpdrs (2003): A System Dynamics Simulation ModeFiad the Effects of XP on Cost of
Change Curve. In proceedings of Fourth Internati@enference on Extreme Programming and Agile m®da Software Engineering,
(XP2003), May 25--29, 2003, Genova, Italy.

[30] Lepar V, Shenoy PP, A Comparison of Laurit8piegelhalter, Hugin, and Shenoy-Shafer Architestufor Computing Marginals of
Probability Distributions (1998), Proceedings af ftith Conference on Uncertainty in Artificial liigeence (UAI-98)

[31] Agile Manifesto, http://www.agilemanifesto.drg\ccessed 10 May 2007.

[32] Alessandra Cau, Giulio Concas, Marco Melisarla Turnu, Evaluate XP Effectiveness Using SimomatModeling, Proceedings 6th
International Conference Extreme Programming ariteARyocesses in Software Engineering, XP 2005ffigkk UK, June 18-23, 2005.

[33] B. George and L. Williams, "An Initial Invegttion of Test-Driven Development in Industry", €edings of ACM Symposium on Applied
Computing, Melbourne, FL, pp. 1135-1139, 2003.

[34] Hao Wang, Fei Peng, Chao Zhang, Andrej Pi&EchSoftware Project Level Estimation Model Fraroswbased on Bayesian Belief
Networks, Sixth International Conference on Qudibftware (QSIC'06)

[35] Stamelos, L. Angelis, P. Dimou, and E. Sak&llaOn the use of bayesian belief networks for phediction of software productivity.
Information & Software Technology, 45(1):51-60, 300

[36] Albrecht A.J., “Measuring Application Developmt Productivity,” Proc. Joint SHARE/GUIDE/IBM Appétion Development Symp.,pp. 83-
92,1979

Peter Hearty is a Ph.D. student at Queen Mary, University ofdam He gained a B.Sc. in Mathematics and Physos the University of Stirling
in 1982. He worked as a programmer, analyst arigri@sfor various commercial organizations befaending his own database company in 1997.

http://mc.manuscriptcentral.com/tse-cs

Page 35 of 35 Transactions on Software Engineering
Predicting Project Velocity in XP using a Learning DynmaBayesian Network Model 35

Norman Fentonis a professor of computing at Queen Mary, Unitgrsf London, and CEO of Agena, which specializesisk management for
critical systems. His research interests includisvaoe metrics, formal methods, empirical softwengineering, software standards, and safety-dritica
systems: recent projects focused on using Bayésibef nets and multicriteria decision aid for risésessment. He has a BSc from the University of
London and an MSc and PhD from Sheffield Universityin mathematics. Contact him at Queen MaryiyUsf

London, Mile End Rd., London E1 4NS, UK; norman@wegeo.uk.

David Marquez is a Research Assistant for the RADAR (Risk Assessrand Decision Analysis) Group, at the Departreé@omputer Science,
Queen Mary, University of London. Before joiningademia he worked as a Senior Researcher in thén@iktry, developing and applying
mathematical and statistical models in reservoarabterisation problems. His research interesisdecBayesian statistical modelling, Bayesian
Networks, Space-State models, and statisticalmpateognition. He has a PhD in mathematic fromthversity of Marne-La-Valle, France.

Martin Neil is a Reader in "Systems Risk" at the Departme@ashputer Science, Queen Mary, University of Londenere he teaches decision

and risk analysis and software engineering. Mastialso a joint founder and Chief Technology Offioé Agena Ltd, who develop and distribute

AgenaRisk, a software product for modelling riskl amcertainty. His interests cover Bayesian mautgkiind/or risk quantification in diverse areas:
operational risk in finance, systems and desigabiity (including software), project risk, deasi support, simulation, Al and personalization, and
statistical learning. Martin earned a BSc in Math#os, a PhD in Statistics and Software MetricsiarmdChartered Engineer.

http://mc.manuscriptcentral.com/tse-cs

