
Defusing the ‘carbon bomb’: A smart-data approach to assessing and managing risk of 
abrupt greenhouse gas emissions from peatlands 

Background: The most essential terrestrial ecosystems for climate action are peatlands. 
Peatlands occupy only 3% of the Earth’s surface but store at least two-fold more carbon (C) 
than standing forests, or one-third of all soil C (1). Alongside other types of wetlands, 
peatlands are the largest and most uncertain natural source of the greenhouse gas (GHG) 
CH4 (2). Peatland GHG emissions (CO2, CH4 and N2O) are strongly influenced by extensive 
human and natural disturbance (e.g., drainage, wildfire) and by rapid climate change (e.g., 
permafrost thaw). Conserving intact peatlands is an effective way of avoiding GHG 
emissions, whilst restoring disturbed peatlands offers a cost-effective ‘natural climate 
solution’ to reduce GHG emissions (3). Without protection, peatland vulnerability to climate 
change and disturbance raises concerns that slowly-accumulating C stocks could be released 
to the atmosphere very rapidly, further accelerating global warming – a potential ‘carbon 
bomb’. To assess uncertainty and manage risk of abrupt GHG emission from peatlands, 
policy-makers need ‘smart data’ on their GHG fluxes.  
 The smart-data approach applies causal knowledge and real-world understanding to 
develop models driven by information required for prediction rather than by data 
availability (4). Prediction of future peatland GHG emissions remains highly uncertain for at 
least two reasons. First, although a few peatlands have been instrumented with eddy 
covariance (EC) flux towers enabling high-frequency (10-20 Hz), automated monitoring of 
gas exchange with the atmosphere, uncertainties in aggregated half-hourly GHG fluxes have 
been quantified based on overly simplistic assumptions (5) and by ignoring systematic and 
structural uncertainties. Second and more fundamentally, EC-based GHG emission data are 
scarce geographically and shorter in duration than relevant controls and interactions, and 
hence understanding of peatland GHG response to climate change and disturbance is weak 
and incomplete. We do know that peatland dynamics are mediated by system feedbacks 
that either dampen or amplify external perturbations (6, 7). For example, a sustained but 
weak increase in precipitation can lead to rapid and dramatic changes in peatland surface 
structure and C sequestration (8). We have qualitative understanding of some of the 
feedbacks responsible for such non-linear behaviour, but we lack full understanding of how 
feedbacks interact with external forces (9) to control GHG fluxes.  
 The aim of the proposed research is to integrate quantitative information on GHG fluxes 
and environmental factors with semi-quantitative understanding of controls and 
interactions and qualitative information on land management. This AI-based ‘smart data’ 
approach will enable better understanding of interactions between environmental, climatic, 
social and economic processes that drive policy and management of peatlands and their 
GHG emissions. Stakeholders will be involved directly in model development, ensuring their 
trust in the data and results. 

Description of the proposed research: The project team brings together critical expertise in 
ecosystem dynamics and modelling; measurement and modelling of GHG fluxes; and 
application of AI techniques to problems of risk and uncertainty. The specific objectives of 
the proposed research are: (i) to build an accurate model of peatland GHG fluxes and 
uncertainties, addressing the challenges of unknown or unobserved processes as well as 
uncertainty in model choice and model structure; and (ii) to incorporate external factors and 
natural mechanisms of resilience into a high-level causal Bayesian network (BN) of peatland 
GHG fluxes, thereby providing a smart-data approach to assessing and managing the risk of 
abrupt GHG emissions from peatlands. We will trial this approach using EC flux and 
environmental data (meteorology, hydrology, vegetation) at two well-studied peatlands in 
the UK GHG flux network: Auchencorth Moss, a transitional lowland raised bog in southern 
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Scotland with a near-continuous 20-year record; and Forsinard, a blanket bog in the Flow 
Country of northern Scotland with a record spanning six years. Data for these contrasting 
sites have been published previously (10, 11) and are curated and managed by CEH. 
Auchencorth Moss is part of the Integrated Carbon Observation System (ICOS), an 
international organisation that aims to quantify the pan-European GHG balance.  

Tools and methods: Building an accurate model of EC-based GHG fluxes is challenging 
because of both uncertainty in correct model structure and unobserved/unmeasured 
processes and interactions. We will tackle these issues using cutting-edge Bayesian and 
Machine Learning (ML) techniques. Robust predictions will be produced by model ensemble 
approaches, combining multiple models using model boosting and model stacking to create 
unbiased estimates with low variance (12, 13). Unobserved processes and feedbacks will be 
constrained using Approximate Bayesian Computation (14), a likelihood-free modelling 
approach, and will assimilate environmental data and their associated uncertainties using 
data assimilation approaches on dynamic model output (e.g. Ensemble Kalman Filter, 
4DVar) (15). To future-proof our approach, we will construct a framework capable of 
assimilating future data-streams, such as remote sensing data, through careful design of 
model state variables.  
 We will extend this data-driven GHG flux model with expert opinion on peatland 
functioning and management. Insights gained during an expert workshop will enable us to 
elicit causal and explanatory risk factors and interventions (including, e.g., political and 
process/people factors) that have, up until now, been either ignored or assumed too 
difficult or controversial to measure. The objective of the workshop will be to identify the 
most appropriate model variables and structure, arriving at a high-level causal Bayesian 
network (BN) (4). As BNs are based on directed acyclic graphs, cyclical causality (i.e., 
feedbacks) cannot be incorporate directly. Instead, we will carry out qualitative analyses of 
sign-directed graphs of key feedbacks, obtaining prediction weights that will be converted 
to conditional probabilities in the BN models (16). Using such a model with the approach 
proposed in, e.g., Pearl and Mackenzie (17), we could in principle more rigorously evaluate 
the effect of various interventions, including the effects of sustained change in one or more 
model variables (e.g., precipitation or temperature), as well as extreme events (e.g., the hot, 
dry summer of 2018 and the extremely wet winter of 2015/16). It will also enable us to 
consider counterfactual questions, such as how observed outcomes might have changed if 
some previous intervention had been different. At Forsinard, for example, we can use GHG 
flux data from contrasting sites (18) to explore the impact of restoring peatlands that were 
afforested in the 1970s/80s as tax refuges. 

Relevance and beneficiaries: Conserving and restoring peatlands will be an important 
component of UK and international climate action, driven by, e.g., the Paris Agreement to 
reduce emissions of GHGs and to conserve or enhance existing C sinks and stocks. This 
project will demonstrate how an innovative, smart-data approach can provide the 
intelligence needed for this action, despite gaps in knowledge and data. Our analyses of 
GHG fluxes will feed via CEH into protocol development and future analyses at ICOS, as well 
as to the BEIS-funded process of verifying the UK inventory of annual GHG emissions. A 
range of stakeholders will participate in the expert workshop, including NGOs active in 
peatland conservation and restoration (e.g., RSPB, IUCN) as well as policy-makers funding 
climate action and reporting on progress (e.g., Scottish government, BEIS).  
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